File size: 6,094 Bytes
5090140
28ed44f
 
0c730b1
bb706d3
687c2f0
28ed44f
 
 
 
 
1c310be
28ed44f
 
7f5b560
28ed44f
7f5b560
687c2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ed44f
687c2f0
bb706d3
687c2f0
 
 
 
 
 
 
 
 
 
 
 
28ed44f
 
 
 
0c730b1
28ed44f
687c2f0
 
 
 
 
 
 
 
 
 
 
6e76606
687c2f0
 
 
 
 
 
 
28ed44f
687c2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c730b1
687c2f0
 
 
 
 
 
 
 
 
459b8b4
28ed44f
687c2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ed44f
687c2f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import json
import gradio as gr
import pandas as pd
from tempfile import NamedTemporaryFile
from typing import List
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

def load_and_split_document_basic(file):
   """Loads and splits the document into pages."""
   loader = PyPDFLoader(file.name)
   data = loader.load_and_split()
   return data
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
   """Loads and splits the document into chunks."""
   loader = PyPDFLoader(file.name)
   pages = loader.load()
   text_splitter = RecursiveCharacterTextSplitter(
       chunk_size=1000,
       chunk_overlap=200,
       length_function=len,
   )
   chunks = text_splitter.split_documents(pages)
   return chunks
def get_embeddings():
   return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_or_update_database(data, embeddings):
   if os.path.exists("faiss_database"):
       db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
       db.add_documents(data)
   else:
       db = FAISS.from_documents(data, embeddings)
   db.save_local("faiss_database")
def clear_cache():
   if os.path.exists("faiss_database"):
       os.remove("faiss_database")
       return "Cache cleared successfully."
   else:
       return "No cache to clear."
prompt = """
Answer the question based only on the following context:
{context}
Question: {question}
Provide a concise and direct answer to the question:
"""
def get_model(temperature, top_p, repetition_penalty):
   return HuggingFaceHub(
       repo_id="mistralai/Mistral-7B-Instruct-v0.3",
       model_kwargs={
           "temperature": temperature,
           "top_p": top_p,
           "repetition_penalty": repetition_penalty,
           "max_length": 512
       },
       huggingfacehub_api_token=huggingface_token
   )
def generate_chunked_response(model, prompt, max_tokens=500, max_chunks=5):
   full_response = ""
   for i in range(max_chunks):
       chunk = model(prompt + full_response, max_new_tokens=max_tokens)
       full_response += chunk
       if chunk.strip().endswith((".", "!", "?")):
           break
   return full_response.strip()
def response(database, model, question):
   prompt_val = ChatPromptTemplate.from_template(prompt)
   retriever = database.as_retriever()
   context = retriever.get_relevant_documents(question)
   context_str = "\n".join([doc.page_content for doc in context])
   formatted_prompt = prompt_val.format(context=context_str, question=question)
   ans = generate_chunked_response(model, formatted_prompt)
   return ans
def update_vectors(files, use_recursive_splitter):
   if not files:
       return "Please upload at least one PDF file."
   embed = get_embeddings()
   total_chunks = 0
   for file in files:
       if use_recursive_splitter:
           data = load_and_split_document_recursive(file)
       else:
           data = load_and_split_document_basic(file)
       create_or_update_database(data, embed)
       total_chunks += len(data)
   return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def ask_question(question, temperature, top_p, repetition_penalty):
   if not question:
       return "Please enter a question."
   embed = get_embeddings()
   database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
   model = get_model(temperature, top_p, repetition_penalty)
   return response(database, model, question)
def extract_db_to_excel():
   embed = get_embeddings()
   database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
   documents = database.docstore._dict.values()
   data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
   df = pd.DataFrame(data)
   with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
       excel_path = tmp.name
       df.to_excel(excel_path, index=False)
   return excel_path
# Gradio interface
with gr.Blocks() as demo:
   gr.Markdown("# Chat with your PDF documents")
   with gr.Row():
       file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
       update_button = gr.Button("Update Vector Store")
       use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
   update_output = gr.Textbox(label="Update Status")
   update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
   with gr.Row():
       question_input = gr.Textbox(label="Ask a question about your documents")
       temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
       top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
       repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
       submit_button = gr.Button("Submit")
   answer_output = gr.Textbox(label="Answer")
   submit_button.click(ask_question, inputs=[question_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=answer_output)
   extract_button = gr.Button("Extract Database to Excel")
   excel_output = gr.File(label="Download Excel File")
   extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
   clear_button = gr.Button("Clear Cache")
   clear_output = gr.Textbox(label="Cache Status")
   clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
   demo.launch()