File size: 9,936 Bytes
4f73269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6cde0
4f73269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
import os
import re
import time
import shutil
from typing import Dict, List, Any
from fastapi.responses import JSONResponse, FileResponse
from gpt_researcher.document.document import DocumentLoader
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
from pathlib import Path
from datetime import datetime
from fastapi import HTTPException
import logging

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

class CustomLogsHandler:
    """Custom handler to capture streaming logs from the research process"""
    def __init__(self, websocket, task: str):
        self.logs = []
        self.websocket = websocket
        sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
        self.log_file = os.path.join("/tmp/outputs", f"{sanitized_filename}.json")
        self.timestamp = datetime.now().isoformat()
        # Initialize log file with metadata
        os.makedirs("/tmp/outputs", exist_ok=True)
        with open(self.log_file, 'w') as f:
            json.dump({
                "timestamp": self.timestamp,
                "events": [],
                "content": {
                    "query": "",
                    "sources": [],
                    "context": [],
                    "report": "",
                    "costs": 0.0
                }
            }, f, indent=2)

    async def send_json(self, data: Dict[str, Any]) -> None:
        """Store log data and send to websocket"""
        # Send to websocket for real-time display
        if self.websocket:
            await self.websocket.send_json(data)
            
        # Read current log file
        with open(self.log_file, 'r') as f:
            log_data = json.load(f)
            
        # Update appropriate section based on data type
        if data.get('type') == 'logs':
            log_data['events'].append({
                "timestamp": datetime.now().isoformat(),
                "type": "event",
                "data": data
            })
        else:
            # Update content section for other types of data
            log_data['content'].update(data)
            
        # Save updated log file
        with open(self.log_file, 'w') as f:
            json.dump(log_data, f, indent=2)
        logger.debug(f"Log entry written to: {self.log_file}")


class Researcher:
    def __init__(self, query: str, report_type: str = "research_report"):
        self.query = query
        self.report_type = report_type
        # Generate unique ID for this research task
        self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
        # Initialize logs handler with research ID
        self.logs_handler = CustomLogsHandler(self.research_id)
        self.researcher = GPTResearcher(
            query=query,
            report_type=report_type,
            websocket=self.logs_handler
        )

    async def research(self) -> dict:
        """Conduct research and return paths to generated files"""
        await self.researcher.conduct_research()
        report = await self.researcher.write_report()
        
        # Generate the files
        sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
        file_paths = await generate_report_files(report, sanitized_filename)
        
        # Get the JSON log path that was created by CustomLogsHandler
        json_relative_path = os.path.relpath(self.logs_handler.log_file)
        
        return {
            "output": {
                **file_paths,  # Include PDF, DOCX, and MD paths
                "json": json_relative_path
            }
        }

def sanitize_filename(filename: str) -> str:
    # Split into components
    prefix, timestamp, *task_parts = filename.split('_')
    task = '_'.join(task_parts)
    
    # Calculate max length for task portion
    # 255 - len("/tmp/outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
    max_task_length = 255 - 8 - 5 - 10 - 6 - 10  # ~216 chars for task
    
    # Truncate task if needed
    truncated_task = task[:max_task_length] if len(task) > max_task_length else task
    
    # Reassemble and clean the filename
    sanitized = f"{prefix}_{timestamp}_{truncated_task}"
    return re.sub(r"[^\w\s-]", "", sanitized).strip()


async def handle_start_command(websocket, data: str, manager):
    json_data = json.loads(data[6:])
    task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
        json_data)

    if not task or not report_type:
        print("Error: Missing task or report_type")
        return

    # Create logs handler with websocket and task
    logs_handler = CustomLogsHandler(websocket, task)
    # Initialize log content with query
    await logs_handler.send_json({
        "query": task,
        "sources": [],
        "context": [],
        "report": ""
    })

    sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")

    report = await manager.start_streaming(
        task, 
        report_type, 
        report_source, 
        source_urls, 
        document_urls,
        tone, 
        websocket,
        headers
    )
    report = str(report)
    file_paths = await generate_report_files(report, sanitized_filename)
    # Add JSON log path to file_paths
    file_paths["json"] = os.path.relpath(logs_handler.log_file)
    await send_file_paths(websocket, file_paths)


async def handle_human_feedback(data: str):
    feedback_data = json.loads(data[14:])  # Remove "human_feedback" prefix
    print(f"Received human feedback: {feedback_data}")
    # TODO: Add logic to forward the feedback to the appropriate agent or update the research state

async def handle_chat(websocket, data: str, manager):
    json_data = json.loads(data[4:])
    print(f"Received chat message: {json_data.get('message')}")
    await manager.chat(json_data.get("message"), websocket)

async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
    pdf_path = await write_md_to_pdf(report, filename)
    docx_path = await write_md_to_word(report, filename)
    md_path = await write_text_to_md(report, filename)
    return {"pdf": pdf_path, "docx": docx_path, "md": md_path}


async def send_file_paths(websocket, file_paths: Dict[str, str]):
    await websocket.send_json({"type": "path", "output": file_paths})


def get_config_dict(
    langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
    google_api_key: str, google_cx_key: str, bing_api_key: str,
    searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
) -> Dict[str, str]:
    return {
        "LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
        "OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
        "TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
        "GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
        "GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
        "BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
        "SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
        "SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
        "SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
        "SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
        "LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
        "DOC_PATH": os.getenv("DOC_PATH", "/tmp/my-docs"),
        "RETRIEVER": os.getenv("RETRIEVER", ""),
        "EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
    }


def update_environment_variables(config: Dict[str, str]):
    for key, value in config.items():
        os.environ[key] = value


async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
    file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
    with open(file_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)
    print(f"File uploaded to {file_path}")

    document_loader = DocumentLoader(DOC_PATH)
    await document_loader.load()

    return {"filename": file.filename, "path": file_path}


async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
    file_path = os.path.join(DOC_PATH, os.path.basename(filename))
    if os.path.exists(file_path):
        os.remove(file_path)
        print(f"File deleted: {file_path}")
        return JSONResponse(content={"message": "File deleted successfully"})
    else:
        print(f"File not found: {file_path}")
        return JSONResponse(status_code=404, content={"message": "File not found"})


async def execute_multi_agents(manager) -> Any:
    websocket = manager.active_connections[0] if manager.active_connections else None
    if websocket:
        report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
        return {"report": report}
    else:
        return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})


async def handle_websocket_communication(websocket, manager):
    while True:
        data = await websocket.receive_text()
        if data.startswith("start"):
            await handle_start_command(websocket, data, manager)
        elif data.startswith("human_feedback"):
            await handle_human_feedback(data)
        elif data.startswith("chat"):
            await handle_chat(websocket, data, manager)
        else:
            print("Error: Unknown command or not enough parameters provided.")


def extract_command_data(json_data: Dict) -> tuple:
    return (
        json_data.get("task"),
        json_data.get("report_type"),
        json_data.get("source_urls"),
        json_data.get("document_urls"),
        json_data.get("tone"),
        json_data.get("headers", {}),
        json_data.get("report_source")
    )