Spaces:
Running
Running
File size: 9,936 Bytes
4f73269 dd6cde0 4f73269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import json
import os
import re
import time
import shutil
from typing import Dict, List, Any
from fastapi.responses import JSONResponse, FileResponse
from gpt_researcher.document.document import DocumentLoader
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
from pathlib import Path
from datetime import datetime
from fastapi import HTTPException
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class CustomLogsHandler:
"""Custom handler to capture streaming logs from the research process"""
def __init__(self, websocket, task: str):
self.logs = []
self.websocket = websocket
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
self.log_file = os.path.join("/tmp/outputs", f"{sanitized_filename}.json")
self.timestamp = datetime.now().isoformat()
# Initialize log file with metadata
os.makedirs("/tmp/outputs", exist_ok=True)
with open(self.log_file, 'w') as f:
json.dump({
"timestamp": self.timestamp,
"events": [],
"content": {
"query": "",
"sources": [],
"context": [],
"report": "",
"costs": 0.0
}
}, f, indent=2)
async def send_json(self, data: Dict[str, Any]) -> None:
"""Store log data and send to websocket"""
# Send to websocket for real-time display
if self.websocket:
await self.websocket.send_json(data)
# Read current log file
with open(self.log_file, 'r') as f:
log_data = json.load(f)
# Update appropriate section based on data type
if data.get('type') == 'logs':
log_data['events'].append({
"timestamp": datetime.now().isoformat(),
"type": "event",
"data": data
})
else:
# Update content section for other types of data
log_data['content'].update(data)
# Save updated log file
with open(self.log_file, 'w') as f:
json.dump(log_data, f, indent=2)
logger.debug(f"Log entry written to: {self.log_file}")
class Researcher:
def __init__(self, query: str, report_type: str = "research_report"):
self.query = query
self.report_type = report_type
# Generate unique ID for this research task
self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
# Initialize logs handler with research ID
self.logs_handler = CustomLogsHandler(self.research_id)
self.researcher = GPTResearcher(
query=query,
report_type=report_type,
websocket=self.logs_handler
)
async def research(self) -> dict:
"""Conduct research and return paths to generated files"""
await self.researcher.conduct_research()
report = await self.researcher.write_report()
# Generate the files
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
file_paths = await generate_report_files(report, sanitized_filename)
# Get the JSON log path that was created by CustomLogsHandler
json_relative_path = os.path.relpath(self.logs_handler.log_file)
return {
"output": {
**file_paths, # Include PDF, DOCX, and MD paths
"json": json_relative_path
}
}
def sanitize_filename(filename: str) -> str:
# Split into components
prefix, timestamp, *task_parts = filename.split('_')
task = '_'.join(task_parts)
# Calculate max length for task portion
# 255 - len("/tmp/outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
max_task_length = 255 - 8 - 5 - 10 - 6 - 10 # ~216 chars for task
# Truncate task if needed
truncated_task = task[:max_task_length] if len(task) > max_task_length else task
# Reassemble and clean the filename
sanitized = f"{prefix}_{timestamp}_{truncated_task}"
return re.sub(r"[^\w\s-]", "", sanitized).strip()
async def handle_start_command(websocket, data: str, manager):
json_data = json.loads(data[6:])
task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
json_data)
if not task or not report_type:
print("Error: Missing task or report_type")
return
# Create logs handler with websocket and task
logs_handler = CustomLogsHandler(websocket, task)
# Initialize log content with query
await logs_handler.send_json({
"query": task,
"sources": [],
"context": [],
"report": ""
})
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
report = await manager.start_streaming(
task,
report_type,
report_source,
source_urls,
document_urls,
tone,
websocket,
headers
)
report = str(report)
file_paths = await generate_report_files(report, sanitized_filename)
# Add JSON log path to file_paths
file_paths["json"] = os.path.relpath(logs_handler.log_file)
await send_file_paths(websocket, file_paths)
async def handle_human_feedback(data: str):
feedback_data = json.loads(data[14:]) # Remove "human_feedback" prefix
print(f"Received human feedback: {feedback_data}")
# TODO: Add logic to forward the feedback to the appropriate agent or update the research state
async def handle_chat(websocket, data: str, manager):
json_data = json.loads(data[4:])
print(f"Received chat message: {json_data.get('message')}")
await manager.chat(json_data.get("message"), websocket)
async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
pdf_path = await write_md_to_pdf(report, filename)
docx_path = await write_md_to_word(report, filename)
md_path = await write_text_to_md(report, filename)
return {"pdf": pdf_path, "docx": docx_path, "md": md_path}
async def send_file_paths(websocket, file_paths: Dict[str, str]):
await websocket.send_json({"type": "path", "output": file_paths})
def get_config_dict(
langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
google_api_key: str, google_cx_key: str, bing_api_key: str,
searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
) -> Dict[str, str]:
return {
"LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
"OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
"TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
"GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
"GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
"BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
"SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
"SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
"SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
"SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
"DOC_PATH": os.getenv("DOC_PATH", "/tmp/my-docs"),
"RETRIEVER": os.getenv("RETRIEVER", ""),
"EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
}
def update_environment_variables(config: Dict[str, str]):
for key, value in config.items():
os.environ[key] = value
async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
print(f"File uploaded to {file_path}")
document_loader = DocumentLoader(DOC_PATH)
await document_loader.load()
return {"filename": file.filename, "path": file_path}
async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
file_path = os.path.join(DOC_PATH, os.path.basename(filename))
if os.path.exists(file_path):
os.remove(file_path)
print(f"File deleted: {file_path}")
return JSONResponse(content={"message": "File deleted successfully"})
else:
print(f"File not found: {file_path}")
return JSONResponse(status_code=404, content={"message": "File not found"})
async def execute_multi_agents(manager) -> Any:
websocket = manager.active_connections[0] if manager.active_connections else None
if websocket:
report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
return {"report": report}
else:
return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})
async def handle_websocket_communication(websocket, manager):
while True:
data = await websocket.receive_text()
if data.startswith("start"):
await handle_start_command(websocket, data, manager)
elif data.startswith("human_feedback"):
await handle_human_feedback(data)
elif data.startswith("chat"):
await handle_chat(websocket, data, manager)
else:
print("Error: Unknown command or not enough parameters provided.")
def extract_command_data(json_data: Dict) -> tuple:
return (
json_data.get("task"),
json_data.get("report_type"),
json_data.get("source_urls"),
json_data.get("document_urls"),
json_data.get("tone"),
json_data.get("headers", {}),
json_data.get("report_source")
)
|