|
import gradio as gr |
|
import nltk |
|
from fincat_utils import extract_context_words |
|
from fincat_utils import bert_embedding_extract |
|
import pickle |
|
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb')) |
|
nltk.download('punkt') |
|
|
|
def score_fincat(txt): |
|
li = [] |
|
highlight = [] |
|
txt = " " + txt + " " |
|
k = '' |
|
for word in txt.split(): |
|
if any(char.isdigit() for char in word): |
|
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]: |
|
k = word[-1] |
|
word = word[:-1] |
|
st = txt.find(" " + word + k + " ")+1 |
|
k = '' |
|
ed = st + len(word) |
|
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed} |
|
context_text = extract_context_words(x) |
|
features = bert_embedding_extract(context_text, word) |
|
if(features[0]=='None'): |
|
continue |
|
prediction = lr_clf.predict(features.reshape(1, 768)) |
|
prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4)) |
|
highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim')) |
|
else: |
|
continue |
|
if(len(highlight)<1): |
|
highlight.append((txt,'None')) |
|
return highlight |