CONBERT-2 / fincat_utils.py
Shredder's picture
Upload fincat_utils.py
f2b2ba4
raw
history blame
4.19 kB
import pandas as pd
import numpy as np
import pickle
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel
from transformers import AutoTokenizer, AutoModel
import nltk
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states = True,)
def extract_context_words(x, window = 6):
paragraph, offset_start, offset_end = x['paragraph'], x['offset_start'], x['offset_end']
target_word = paragraph[offset_start : offset_end]
paragraph = ' ' + paragraph + ' '
offset_start = offset_start + 1
offset_end = offset_end + 1
prev_space_posn = (paragraph[:offset_start].rindex(' ') + 1)
end_space_posn = (offset_end + paragraph[offset_end:].index(' '))
full_word = paragraph[prev_space_posn : end_space_posn]
prev_words = nltk.word_tokenize(paragraph[0:prev_space_posn])
next_words = nltk.word_tokenize(paragraph[end_space_posn:])
words_in_context_window = prev_words[-1*window:] + [full_word] + next_words[:window]
context_text = ' '.join(words_in_context_window)
return context_text
"""The following functions have been created with inspiration from https://github.com/arushiprakash/MachineLearning/blob/main/BERT%20Word%20Embeddings.ipynb"""
def bert_text_preparation(text, tokenizer):
"""Preparing the input for BERT
Takes a string argument and performs
pre-processing like adding special tokens,
tokenization, tokens to ids, and tokens to
segment ids. All tokens are mapped to seg-
ment id = 1.
Args:
text (str): Text to be converted
tokenizer (obj): Tokenizer object
to convert text into BERT-re-
adable tokens and ids
Returns:
list: List of BERT-readable tokens
obj: Torch tensor with token ids
obj: Torch tensor segment ids
"""
marked_text = "[CLS] " + text + " [SEP]"
tokenized_text = tokenizer.tokenize(marked_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [1]*len(indexed_tokens)
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
return tokenized_text, tokens_tensor, segments_tensors
def get_bert_embeddings(tokens_tensor, segments_tensors, model):
"""Get embeddings from an embedding model
Args:
tokens_tensor (obj): Torch tensor size [n_tokens]
with token ids for each token in text
segments_tensors (obj): Torch tensor size [n_tokens]
with segment ids for each token in text
model (obj): Embedding model to generate embeddings
from token and segment ids
Returns:
list: List of list of floats of size
[n_tokens, n_embedding_dimensions]
containing embeddings for each token
"""
# Gradient calculation id disabled
# Model is in inference mode
with torch.no_grad():
outputs = model(tokens_tensor, segments_tensors)
# Removing the first hidden state
# The first state is the input state
hidden_states = outputs[2][1:]
# Getting embeddings from the final BERT layer
token_embeddings = hidden_states[-1]
# Collapsing the tensor into 1-dimension
token_embeddings = torch.squeeze(token_embeddings, dim=0)
# Converting torchtensors to lists
list_token_embeddings = [token_embed.tolist() for token_embed in token_embeddings]
return list_token_embeddings
def bert_embedding_extract(context_text, word):
tokenized_text, tokens_tensor, segments_tensors = bert_text_preparation(context_text, tokenizer)
list_token_embeddings = get_bert_embeddings(tokens_tensor, segments_tensors, model)
word_tokens,tt,st = bert_text_preparation(word, tokenizer)
word_embedding_all = []
for word_tk in word_tokens:
word_index = tokenized_text.index(word_tk)
word_embedding = list_token_embeddings[word_index]
word_embedding_all.append(word_embedding)
word_embedding_mean = np.array(word_embedding_all).mean(axis=0)
return word_embedding_mean