Spaces:
Runtime error
Runtime error
File size: 8,905 Bytes
8ddfa3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import numpy as np
import os
import re
import datetime
import time
import openai, tenacity
import argparse
import configparser
import json
import tiktoken
from get_paper_from_pdf import Paper
# 定义Reviewer类
class Reviewer:
# 初始化方法,设置属性
def __init__(self, args=None):
if args.language == 'en':
self.language = 'English'
elif args.language == 'zh':
self.language = 'Chinese'
else:
self.language = 'Chinese'
# 创建一个ConfigParser对象
self.config = configparser.ConfigParser()
# 读取配置文件
self.config.read('apikey.ini')
# 获取某个键对应的值
self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',')
self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5]
self.cur_api = 0
self.file_format = args.file_format
self.max_token_num = 4096
self.encoding = tiktoken.get_encoding("gpt2")
def validateTitle(self, title):
# 修正论文的路径格式
rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |'
new_title = re.sub(rstr, "_", title) # 替换为下划线
return new_title
def review_by_chatgpt(self, paper_list):
htmls = []
for paper_index, paper in enumerate(paper_list):
sections_of_interest = self.stage_1(paper)
# extract the essential parts of the paper
text = ''
text += 'Title:' + paper.title + '. '
text += 'Abstract: ' + paper.section_texts['Abstract']
intro_title = next((item for item in paper.section_names if 'ntroduction' in item), None)
if intro_title is not None:
text += 'Introduction: ' + paper.section_texts[intro_title]
# Similar for conclusion section
conclusion_title = next((item for item in paper.section_names if 'onclusion' in item), None)
if conclusion_title is not None:
text += 'Conclusion: ' + paper.section_texts[conclusion_title]
for heading in sections_of_interest:
if heading in paper.section_names:
text += heading + ': ' + paper.section_texts[heading]
chat_review_text = self.chat_review(text=text)
htmls.append('## Paper:' + str(paper_index+1))
htmls.append('\n\n\n')
htmls.append(chat_review_text)
# 将审稿意见保存起来
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
try:
export_path = os.path.join('./', 'output_file')
os.makedirs(export_path)
except:
pass
mode = 'w' if paper_index == 0 else 'a'
file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+"."+self.file_format)
self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode)
htmls = []
def stage_1(self, paper):
htmls = []
text = ''
text += 'Title: ' + paper.title + '. '
text += 'Abstract: ' + paper.section_texts['Abstract']
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
messages = [
{"role": "system",
"content": f"You are a professional reviewer in the field of {args.research_fields}. "
f"I will give you a paper. You need to review this paper and discuss the novelty and originality of ideas, correctness, clarity, the significance of results, potential impact and quality of the presentation. "
f"Due to the length limitations, I am only allowed to provide you the abstract, introduction, conclusion and at most two sections of this paper."
f"Now I will give you the title and abstract and the headings of potential sections. "
f"You need to reply at most two headings. Then I will further provide you the full information, includes aforementioned sections and at most two sections you called for.\n\n"
f"Title: {paper.title}\n\n"
f"Abstract: {paper.section_texts['Abstract']}\n\n"
f"Potential Sections: {paper.section_names[2:-1]}\n\n"
f"Follow the following format to output your choice of sections:"
f"{{chosen section 1}}, {{chosen section 2}}\n\n"},
{"role": "user", "content": text},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print(result)
return result.split(',')
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_review(self, text):
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
review_prompt_token = 1000
text_token = len(self.encoding.encode(text))
input_text_index = int(len(text)*(self.max_token_num-review_prompt_token)/text_token)
input_text = "This is the paper for your review:" + text[:input_text_index]
with open('ReviewFormat.txt', 'r') as file: # 读取特定的审稿格式
review_format = file.read()
messages=[
{"role": "system", "content": "You are a professional reviewer in the field of "+args.research_fields+". Now I will give you a paper. You need to give a complete review opinion according to the following requirements and format:"+ review_format +" Please answer in {}.".format(self.language)},
{"role": "user", "content": input_text},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("********"*10)
print(result)
print("********"*10)
print("prompt_token_used:", response.usage.prompt_tokens)
print("completion_token_used:", response.usage.completion_tokens)
print("total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms/1000.0, 's')
return result
def export_to_markdown(self, text, file_name, mode='w'):
# 使用markdown模块的convert方法,将文本转换为html格式
# html = markdown.markdown(text)
# 打开一个文件,以写入模式
with open(file_name, mode, encoding="utf-8") as f:
# 将html格式的内容写入文件
f.write(text)
def main(args):
reviewer1 = Reviewer(args=args)
# 开始判断是路径还是文件:
paper_list = []
if args.paper_path.endswith(".pdf"):
paper_list.append(Paper(path=args.paper_path))
else:
for root, dirs, files in os.walk(args.paper_path):
print("root:", root, "dirs:", dirs, 'files:', files) #当前目录路径
for filename in files:
# 如果找到PDF文件,则将其复制到目标文件夹中
if filename.endswith(".pdf"):
paper_list.append(Paper(path=os.path.join(root, filename)))
print("------------------paper_num: {}------------------".format(len(paper_list)))
[print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)]
reviewer1.review_by_chatgpt(paper_list=paper_list)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--paper_path", type=str, default='', help="path of papers")
parser.add_argument("--file_format", type=str, default='txt', help="output file format")
parser.add_argument("--research_fields", type=str, default='computer science, artificial intelligence and reinforcement learning', help="the research fields of paper")
parser.add_argument("--language", type=str, default='en', help="output lauguage, en or zh")
args = parser.parse_args()
start_time = time.time()
main(args=args)
print("review time:", time.time() - start_time)
|