File size: 8,905 Bytes
8ddfa3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import os
import re
import datetime
import time
import openai, tenacity
import argparse
import configparser
import json
import tiktoken
from get_paper_from_pdf import Paper

# 定义Reviewer类
class Reviewer:
    # 初始化方法,设置属性
    def __init__(self, args=None):
        if args.language == 'en':
            self.language = 'English'
        elif args.language == 'zh':
            self.language = 'Chinese'
        else:
            self.language = 'Chinese'        
        # 创建一个ConfigParser对象
        self.config = configparser.ConfigParser()
        # 读取配置文件
        self.config.read('apikey.ini')
        # 获取某个键对应的值        
        self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',')
        self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5]
        self.cur_api = 0
        self.file_format = args.file_format        
        self.max_token_num = 4096
        self.encoding = tiktoken.get_encoding("gpt2")
    
    def validateTitle(self, title):
        # 修正论文的路径格式
        rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |'
        new_title = re.sub(rstr, "_", title) # 替换为下划线
        return new_title


    def review_by_chatgpt(self, paper_list):
        htmls = []
        for paper_index, paper in enumerate(paper_list):
            sections_of_interest = self.stage_1(paper)
            # extract the essential parts of the paper
            text = ''
            text += 'Title:' + paper.title + '. '
            text += 'Abstract: ' + paper.section_texts['Abstract']
            intro_title = next((item for item in paper.section_names if 'ntroduction' in item), None)
            if intro_title is not None:
                text += 'Introduction: ' + paper.section_texts[intro_title]
            # Similar for conclusion section
            conclusion_title = next((item for item in paper.section_names if 'onclusion' in item), None)
            if conclusion_title is not None:
                text += 'Conclusion: ' + paper.section_texts[conclusion_title]
            for heading in sections_of_interest:
                if heading in paper.section_names:
                    text += heading + ': ' + paper.section_texts[heading]
            chat_review_text = self.chat_review(text=text)            
            htmls.append('## Paper:' + str(paper_index+1))
            htmls.append('\n\n\n')            
            htmls.append(chat_review_text)
            
            # 将审稿意见保存起来
            date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
            try:
                export_path = os.path.join('./', 'output_file')
                os.makedirs(export_path)
            except:
                pass                             
            mode = 'w' if paper_index == 0 else 'a'
            file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+"."+self.file_format)
            self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode)
            htmls = []


    def stage_1(self, paper):
        htmls = []
        text = ''
        text += 'Title: ' + paper.title + '. '
        text += 'Abstract: ' + paper.section_texts['Abstract']
        openai.api_key = self.chat_api_list[self.cur_api]
        self.cur_api += 1
        self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
        messages = [
            {"role": "system",
             "content": f"You are a professional reviewer in the field of {args.research_fields}. "
                        f"I will give you a paper. You need to review this paper and discuss the novelty and originality of ideas, correctness, clarity, the significance of results, potential impact and quality of the presentation. "
                        f"Due to the length limitations, I am only allowed to provide you the abstract, introduction, conclusion and at most two sections of this paper."
                        f"Now I will give you the title and abstract and the headings of potential sections. "
                        f"You need to reply at most two headings. Then I will further provide you the full information, includes aforementioned sections and at most two sections you called for.\n\n"
                        f"Title: {paper.title}\n\n"
                        f"Abstract: {paper.section_texts['Abstract']}\n\n"
                        f"Potential Sections: {paper.section_names[2:-1]}\n\n"
                        f"Follow the following format to output your choice of sections:"
                        f"{{chosen section 1}}, {{chosen section 2}}\n\n"},
            {"role": "user", "content": text},
        ]
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
        )
        result = ''
        for choice in response.choices:
            result += choice.message.content
        print(result)
        return result.split(',')

    @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
                    stop=tenacity.stop_after_attempt(5),
                    reraise=True)
    def chat_review(self, text):
        openai.api_key = self.chat_api_list[self.cur_api]
        self.cur_api += 1
        self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
        review_prompt_token = 1000        
        text_token = len(self.encoding.encode(text))
        input_text_index = int(len(text)*(self.max_token_num-review_prompt_token)/text_token)
        input_text = "This is the paper for your review:" + text[:input_text_index]
        with open('ReviewFormat.txt', 'r') as file:   # 读取特定的审稿格式
            review_format = file.read()
        messages=[
                {"role": "system", "content": "You are a professional reviewer in the field of "+args.research_fields+". Now I will give you a paper. You need to give a complete review opinion according to the following requirements and format:"+ review_format +" Please answer in {}.".format(self.language)},
                {"role": "user", "content": input_text},
            ]
                
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
        )
        result = ''
        for choice in response.choices:
            result += choice.message.content
        print("********"*10)
        print(result)
        print("********"*10)
        print("prompt_token_used:", response.usage.prompt_tokens)
        print("completion_token_used:", response.usage.completion_tokens)
        print("total_token_used:", response.usage.total_tokens)
        print("response_time:", response.response_ms/1000.0, 's')                    
        return result        
                        
    def export_to_markdown(self, text, file_name, mode='w'):
        # 使用markdown模块的convert方法,将文本转换为html格式
        # html = markdown.markdown(text)
        # 打开一个文件,以写入模式
        with open(file_name, mode, encoding="utf-8") as f:
            # 将html格式的内容写入文件
            f.write(text)                    

def main(args):            

    reviewer1 = Reviewer(args=args)
    # 开始判断是路径还是文件:   
    paper_list = []     
    if args.paper_path.endswith(".pdf"):
        paper_list.append(Paper(path=args.paper_path))            
    else:
        for root, dirs, files in os.walk(args.paper_path):
            print("root:", root, "dirs:", dirs, 'files:', files) #当前目录路径
            for filename in files:
                # 如果找到PDF文件,则将其复制到目标文件夹中
                if filename.endswith(".pdf"):
                    paper_list.append(Paper(path=os.path.join(root, filename)))        
    print("------------------paper_num: {}------------------".format(len(paper_list)))        
    [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)]
    reviewer1.review_by_chatgpt(paper_list=paper_list)

    
    
if __name__ == '__main__':    
    parser = argparse.ArgumentParser()
    parser.add_argument("--paper_path", type=str, default='', help="path of papers")
    parser.add_argument("--file_format", type=str, default='txt', help="output file format")
    parser.add_argument("--research_fields", type=str, default='computer science, artificial intelligence and reinforcement learning', help="the research fields of paper")
    parser.add_argument("--language", type=str, default='en', help="output lauguage, en or zh")
    
    args = parser.parse_args()
    start_time = time.time()
    main(args=args)    
    print("review time:", time.time() - start_time)