Spaces:
Running
Running
import os | |
import tensorflow as tf | |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' | |
import matplotlib as mpl | |
mpl.rcParams['figure.figsize'] = (12, 12) | |
mpl.rcParams['axes.grid'] = False | |
import numpy as np | |
import PIL.Image | |
import tensorflow_hub as hub | |
def tensor_to_image(tensor): | |
tensor = tensor * 255 | |
tensor = np.array(tensor, dtype=np.uint8) | |
if np.ndim(tensor) > 3: | |
assert tensor.shape[0] == 1 | |
tensor = tensor[0] | |
return PIL.Image.fromarray(tensor) | |
def load_img(path_to_img): | |
max_dim = 512 | |
img = tf.io.read_file(path_to_img) | |
img = tf.image.decode_image(img, channels=3) | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
shape = tf.cast(tf.shape(img)[:-1], tf.float32) | |
long_dim = max(shape) | |
scale = max_dim / long_dim | |
new_shape = tf.cast(shape * scale, tf.int32) | |
img = tf.image.resize(img, new_shape) | |
img = img[tf.newaxis, :] | |
return img | |
def convert_img(pil_image): | |
max_dim = 512 | |
# Конвертируем PIL изображение в тензор | |
img = tf.convert_to_tensor(np.array(pil_image)) | |
# Убедимся, что изображение имеет 3 канала (RGB) | |
if img.shape[-1] != 3: | |
img = tf.stack([img, img, img], axis=-1) | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
shape = tf.cast(tf.shape(img)[:-1], tf.float32) | |
long_dim = max(shape) | |
scale = max_dim / long_dim | |
new_shape = tf.cast(shape * scale, tf.int32) | |
img = tf.image.resize(img, new_shape) | |
img = img[tf.newaxis, :] | |
return img | |
def convert_img_break(pil_image): | |
max_dim = 512 | |
# Преобразуем PIL изображение в тензор | |
img = tf.keras.preprocessing.image.img_to_array(pil_image) | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
shape = tf.cast(tf.shape(img)[:-1], tf.float32) | |
long_dim = max(shape) | |
scale = max_dim / long_dim | |
new_shape = tf.cast(shape * scale, tf.int32) | |
img = tf.image.resize(img, new_shape) | |
img = img[tf.newaxis, :] | |
return img | |
class StyleStealer: | |
def __init__(self, model): | |
self.model = model | |
def steal_break(self, content_img, style_img): | |
return tensor_to_image(self.model(tf.constant(convert_img_break(content_img)), | |
tf.constant(convert_img_break(style_img)))[0]) | |
def steal(self, content_img, style_img): | |
return tensor_to_image(self.model(tf.constant(convert_img(content_img)), | |
tf.constant(convert_img(style_img)))[0]) | |
if __name__ == "__main__": | |
content_path = "images/input_4.jpg" | |
style_path = "images/style_6.png" | |
content_image = load_img(content_path) | |
style_image = load_img(style_path) | |
print("Loading model...") | |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
print("Model loaded") | |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] | |
tensor_to_image(stylized_image).save("output.jpg") | |