Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,276 Bytes
41345fb 292f168 41345fb 0b80321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import spaces
import os
import gradio as gr
from video_super_resolution.scripts.inference_sr import STAR_sr
# Example video and prompt pairs
examples = [
["examples/023_klingai_reedit.mp4", "The video shows a panda strumming a guitar on a rock by a tranquil lake at sunset. With its black-and-white fur, the panda sits against a backdrop of mountains and a vibrant sky painted in orange and pink hues. The serene scene highlights relaxation and whimsy, with the panda, guitar, and lake harmoniously positioned. The natural landscape's depth and perspective enhance the focus on the panda's peaceful interaction with the guitar.", 4, 24, 250],
["examples/017_klingai_reedit.mp4", "The video depicts a majestic lion with eagle-like wings standing on a grassy hill against rolling green hills and a clear sky. The lion’s golden mane contrasts with the warm hues of the scene, and its intense gaze draws focus. The detailed, fully spread wings add a fantastical element. A 'PremiumBeat' watermark appears in the lower right, hinting at the image's source. The style blends realism with fantasy, showcasing the lion's mythical nature.", 4, 24, 250],
["examples/016_video.mp4", "The video is a black-and-white silent film featuring two men in wheelchairs on a pier. The foreground man, in a suit and hat, holds a sign reading 'HELP CRIPPLE.' The background shows a building and a boat, with early 20th-century clothing and image quality suggesting a narrative of disability and assistance.", 4, 24, 300],
]
# Define a GPU-decorated function for enhancement
@spaces.GPU()
def enhance_with_gpu(input_video, input_text, upscale, max_chunk_len, chunk_size):
"""在每次调用时创建新的 STAR_sr 实例,确保参数正确传递"""
star = STAR_sr(
result_dir="./results/",
upscale=upscale,
max_chunk_len=max_chunk_len,
chunk_size=chunk_size
)
return star.enhance_a_video(input_video, input_text)
def star_demo(result_dir="./tmp/"):
css = """#input_video {max-width: 1024px !important} #output_vid {max-width: 2048px; max-height:1280px}"""
with gr.Blocks(analytics_enabled=False, css=css) as star_iface:
gr.Markdown(
"<div align='center'> <h1> STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution </span> </h1> \
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2501.02976'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://nju-pcalab.github.io/projects/STAR'> [Project Page] </a> \
<a style='font-size:18px;color: #000000' href='https://github.com/NJU-PCALab/STAR'> [Github] </a> </div>"
)
with gr.Tab(label="STAR"):
with gr.Column():
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id="input_video")
input_text = gr.Text(label="Prompts")
upscale = gr.Slider(1, 4, value=4, step=1, label="Upscale Factor")
max_chunk_len = gr.Slider(1, 32, value=24, step=1, label="Input Chunk Length")
chunk_size = gr.Slider(1, 5, value=3, step=1, label="Decode Chunk Size")
end_btn = gr.Button("Generate")
output_video = gr.Video(label="Generated Video", elem_id="output_vid", autoplay=True, show_share_button=True)
gr.Examples(
examples=examples,
inputs=[input_video, input_text],
outputs=[output_video],
fn=enhance_with_gpu, # Use the GPU-decorated function
cache_examples=False,
)
end_btn.click(
inputs=[input_video, input_text, upscale, max_chunk_len, chunk_size],
outputs=[output_video],
fn=enhance_with_gpu, # Use the GPU-decorated function
)
return star_iface
if __name__ == "__main__":
result_dir = os.path.join("./", "results")
star_iface = star_demo(result_dir)
star_iface.queue(max_size=12)
star_iface.launch(max_threads=1) |