Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from transformers import BertTokenizer, BertModel
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
@@ -25,28 +26,44 @@ async def classify_text(request: TextClassificationRequest):
|
|
25 |
return_tensors='pt'
|
26 |
)
|
27 |
|
28 |
-
# Create a dictionary to store the output
|
29 |
-
output = {}
|
30 |
-
|
31 |
# Use the pre-trained BERT model to extract features from the input text
|
32 |
outputs = model(**inputs)
|
33 |
|
34 |
# Extract the features
|
35 |
features = outputs.last_hidden_state[:, 0, :]
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
40 |
return output
|
41 |
|
42 |
# Create a Gradio interface
|
43 |
interface = gr.Interface(
|
44 |
-
fn=
|
45 |
-
inputs="
|
46 |
-
outputs="
|
47 |
title="PDF Text Classification",
|
48 |
-
description="Upload a PDF file to classify its text"
|
49 |
)
|
50 |
|
51 |
-
# Launch the interface
|
52 |
-
interface.launch()
|
|
|
3 |
from transformers import BertTokenizer, BertModel
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
+
import pdfplumber
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
|
|
26 |
return_tensors='pt'
|
27 |
)
|
28 |
|
|
|
|
|
|
|
29 |
# Use the pre-trained BERT model to extract features from the input text
|
30 |
outputs = model(**inputs)
|
31 |
|
32 |
# Extract the features
|
33 |
features = outputs.last_hidden_state[:, 0, :]
|
34 |
|
35 |
+
# Return the features as a list
|
36 |
+
return {"features": features.tolist()}
|
37 |
+
|
38 |
+
# Define a function to extract text from a PDF
|
39 |
+
def extract_text_from_pdf(pdf_file):
|
40 |
+
with pdfplumber.open(pdf_file) as pdf:
|
41 |
+
text = ""
|
42 |
+
for page in pdf.pages:
|
43 |
+
text += page.extract_text()
|
44 |
+
return text
|
45 |
+
|
46 |
+
# Create a Gradio interface for handling PDF input
|
47 |
+
def classify_pdf(pdf_file):
|
48 |
+
# Extract text from the uploaded PDF
|
49 |
+
extracted_text = extract_text_from_pdf(pdf_file)
|
50 |
+
|
51 |
+
# Create the request for FastAPI
|
52 |
+
request = TextClassificationRequest(text=extracted_text)
|
53 |
|
54 |
+
# Simulate calling the FastAPI endpoint
|
55 |
+
output = classify_text(request)
|
56 |
+
|
57 |
return output
|
58 |
|
59 |
# Create a Gradio interface
|
60 |
interface = gr.Interface(
|
61 |
+
fn=classify_pdf,
|
62 |
+
inputs="file", # Expecting PDF file input
|
63 |
+
outputs="json", # Outputs a JSON dictionary
|
64 |
title="PDF Text Classification",
|
65 |
+
description="Upload a PDF file to classify its text using BERT"
|
66 |
)
|
67 |
|
68 |
+
# Launch the Gradio interface
|
69 |
+
interface.launch()
|