Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizer, BertModel
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
class TextClassificationRequest(BaseModel):
|
10 |
+
text: str
|
11 |
+
|
12 |
+
@app.post("/classify")
|
13 |
+
async def classify_text(request: TextClassificationRequest):
|
14 |
+
# Load the pre-trained BERT model and tokenizer
|
15 |
+
model_name = "bert-base-uncased"
|
16 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
17 |
+
model = BertModel.from_pretrained(model_name)
|
18 |
+
|
19 |
+
# Preprocess the input text
|
20 |
+
inputs = tokenizer.encode_plus(
|
21 |
+
request.text,
|
22 |
+
add_special_tokens=True,
|
23 |
+
max_length=512,
|
24 |
+
return_attention_mask=True,
|
25 |
+
return_tensors='pt'
|
26 |
+
)
|
27 |
+
|
28 |
+
# Create a dictionary to store the output
|
29 |
+
output = {}
|
30 |
+
|
31 |
+
# Use the pre-trained BERT model to extract features from the input text
|
32 |
+
outputs = model(**inputs)
|
33 |
+
|
34 |
+
# Extract the features
|
35 |
+
features = outputs.last_hidden_state[:, 0, :]
|
36 |
+
|
37 |
+
# Store the output
|
38 |
+
output["features"] = features.tolist()
|
39 |
+
|
40 |
+
return output
|
41 |
+
|
42 |
+
# Create a Gradio interface
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=classify_text,
|
45 |
+
inputs="pdf",
|
46 |
+
outputs="text",
|
47 |
+
title="PDF Text Classification",
|
48 |
+
description="Upload a PDF file to classify its text"
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the interface
|
52 |
+
interface.launch()
|