Spaces:
Sleeping
Sleeping
File size: 11,376 Bytes
b7b7347 352aef3 b7b7347 4ac3aa5 b7b7347 4ac3aa5 b7b7347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from preprocess import get_words
from predict import PredictArguments, SegmentationArguments, predict as pred
from shared import GeneralArguments, seconds_to_time, CATGEGORY_OPTIONS
from utils import regex_search
from model import get_model_tokenizer_classifier
from errors import TranscriptError
st.set_page_config(
page_title='PromoDetect',
page_icon='🤖',
layout='wide',
# initial_sidebar_state="expanded",
menu_items={
# 'Get Help': 'https://github.com/xenova/sponsorblock-ml',
# 'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
YT_VIDEO_REGEX = r'''(?x)^
(?:
# http(s):// or protocol-independent URL
(?:https?://|//)
(?:(?:(?:(?:\w+\.)?[yY][oO][uU][tT][uU][bB][eE](?:-nocookie|kids)?\.com/|
youtube\.googleapis\.com/) # the various hostnames, with wildcard subdomains
(?:.*?\#/)? # handle anchor (#/) redirect urls
(?: # the various things that can precede the ID:
# v/ or embed/ or e/
(?:(?:v|embed|e)/(?!videoseries))
|(?: # or the v= param in all its forms
# preceding watch(_popup|.php) or nothing (like /?v=xxxx)
(?:(?:watch|movie)(?:_popup)?(?:\.php)?/?)?
(?:\?|\#!?) # the params delimiter ? or # or #!
# any other preceding param (like /?s=tuff&v=xxxx or ?s=tuff&v=V36LpHqtcDY)
(?:.*?[&;])??
v=
)
))
|(?:
youtu\.be # just youtu.be/xxxx
)/)
)? # all until now is optional -> you can pass the naked ID
# here is it! the YouTube video ID
(?P<id>[0-9A-Za-z_-]{11})'''
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache_data()
def create_prediction_cache():
return {}
@st.cache_data()
def create_function_cache():
return {}
prediction_cache = create_prediction_cache()
prediction_function_cache = create_function_cache()
MODELS = {
'Small (293 MB)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
'num_parameters': '77M'
},
'Base v1 (850 MB)': {
'pretrained': 't5-base',
'repo_id': 'Xenova/sponsorblock-base-v1',
'num_parameters': '220M'
},
'Base v1.1 (944 MB)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base-v1.1',
'num_parameters': '250M'
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier-v2'
TRANSCRIPT_TYPES = {
'AUTO_MANUAL': {
'label': 'Auto-generated (fallback to manual)',
'type': 'auto',
'fallback': 'manual'
},
'MANUAL_AUTO': {
'label': 'Manual (fallback to auto-generated)',
'type': 'manual',
'fallback': 'auto'
},
# 'TRANSLATED': 'Translated to English' # Coming soon
}
def predict_function(model_id, model, tokenizer, segmentation_args, classifier, video_id, words, ts_type_id):
cache_id = f'{video_id}_{ts_type_id}'
if cache_id not in prediction_cache[model_id]:
prediction_cache[model_id][cache_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
words=words,
classifier=classifier
)
return prediction_cache[model_id][cache_id]
def load_predict(model_id):
model_info = MODELS[model_id]
if model_id not in prediction_function_cache:
# Use default segmentation and classification arguments
predict_args = PredictArguments(model_name_or_path=model_info['repo_id'])
general_args = GeneralArguments()
segmentation_args = SegmentationArguments()
model, tokenizer, classifier = get_model_tokenizer_classifier(predict_args, general_args)
prediction_function_cache[model_id] = partial(
predict_function, model_id, model, tokenizer, segmentation_args, classifier)
return prediction_function_cache[model_id]
def create_button(text, url):
return f"""<div class="row-widget stButton" style="text-align: center">
<a href="{url}" target="_blank" rel="noopener noreferrer" class="btn-link">
<button kind="primary" class="btn">{text}</button>
</a>
</div>"""
def main():
st.markdown("""<style>
.btn {
display: inline-flex;
-webkit-box-align: center;
align-items: center;
-webkit-box-pack: center;
justify-content: center;
font-weight: 600;
padding: 0.25rem 0.75rem;
border-radius: 0.25rem;
margin: 0px;
line-height: 1.5;
color: inherit;
width: auto;
user-select: none;
background-color: inherit;
border: 1px solid rgba(49, 51, 63, 0.2);
}
.btn-link {
color: inherit;
text-decoration: none;
}
</style>""", unsafe_allow_html=True)
top = st.container()
output = st.empty()
# Display heading and subheading
top.markdown('# PromoDetect')
top.markdown(
'##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
# Add controls
col1, col2 = top.columns(2)
with col1:
model_id = st.selectbox(
'Select model', MODELS.keys(), index=0, on_change=output.empty)
with col2:
ts_type_id = st.selectbox(
'Transcript type', TRANSCRIPT_TYPES.keys(), index=0, format_func=lambda x: TRANSCRIPT_TYPES[x]['label'], on_change=output.empty)
query_params = st.experimental_get_query_params()
video_id = None
if 'v' in query_params:
video_id = query_params['v'][0]
if video_id is None:
video_input = top.text_input('Video URL/ID:', on_change=output.empty)
else :
video_input = top.text_input('Video URL/ID:', on_change=output.empty,value = video_id)
categories = top.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get, on_change=output.empty
)
# Hide segments with a confidence lower than
confidence_threshold = top.slider(
'Confidence Threshold (%):', min_value=0, value=50, max_value=100, on_change=output.empty)
if len(video_input) == 0: # No input, do not continue
return
# Load prediction function
with st.spinner('Loading model...'):
predict = load_predict(model_id)
with output.container(): # Place all content in output container
video_id = regex_search(video_input, YT_VIDEO_REGEX)
if video_id is None:
st.exception(ValueError('Invalid YouTube URL/ID'))
return
try:
with st.spinner('Downloading transcript...'):
words = get_words(video_id,
transcript_type=TRANSCRIPT_TYPES[ts_type_id]['type'],
fallback=TRANSCRIPT_TYPES[ts_type_id]['fallback']
)
except TranscriptError:
pass
if not words:
st.error('No transcript found!')
return
with st.spinner('Running model...'):
predictions = predict(video_id, words, ts_type_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
category_key = prediction['category'].upper()
if category_key not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'],
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{category_key}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[category_key]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
if not submit_segments:
st.success(
f'No segments found! ({len(predictions)} ignored due to filters/settings)')
return
num_hidden = len(predictions) - len(submit_segments)
if num_hidden > 0:
st.info(
f'{num_hidden} predictions hidden (adjust the settings and filters to view them all).')
json_data = quote(json.dumps(submit_segments))
link = f'https://www.youtube.com/watch?v={video_id}#segments={json_data}'
st.markdown(create_button('Submit Segments', link),
unsafe_allow_html=True)
# st.markdown(f"""<div style="text-align: center;font-size: 16px;margin-top: 6px">
# <a href="https://wiki.sponsor.ajay.app/w/Automating_Submissions" target="_blank" rel="noopener noreferrer">(Review before submitting!)</a>
# </div>""", unsafe_allow_html=True)
if __name__ == '__main__':
main()
|