Spaces:
Runtime error
Runtime error
File size: 5,687 Bytes
edb0494 6405936 edb0494 6405936 edb0494 a7d8817 6405936 6e4f1a9 6405936 49f2888 a7d8817 b230b71 a7d8817 80b786b a7d8817 6405936 a7d8817 6405936 a7d8817 6e4f1a9 6405936 6e4f1a9 6405936 97567b1 6405936 97567b1 6405936 97567b1 6405936 b230b71 6405936 97567b1 6405936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
prompt = "high quality"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)
@spaces.GPU
"""
def fill_image(image, model_selection):
margin = 256
overlap = 24
# Open the original image
source = image # Changed from image["background"] to match new input format
# Calculate new output size
output_size = (source.width + 2*margin, source.height + 2*margin)
# Create a white background
background = Image.new('RGB', output_size, (255, 255, 255))
# Calculate position to paste the original image
position = (margin, margin)
# Paste the original image onto the white background
background.paste(source, position)
# Create the mask
mask = Image.new('L', output_size, 255) # Start with all white
mask_draw = ImageDraw.Draw(mask)
mask_draw.rectangle([
(position[0] + overlap, position[1] + overlap),
(position[0] + source.width - overlap, position[1] + source.height - overlap)
], fill=0)
# Prepare the image for ControlNet
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
"""
def fill_image(image, model_selection):
source = image
target_ratio=(9, 16)
overlap=24
# Calculate the target width based on the 9:16 ratio
target_width = (source.height * target_ratio[0]) // target_ratio[1]
# Calculate margins
margin_x = max(0, (target_width - source.width) // 2)
margin_y = 0 # No vertical expansion
# Calculate new output size
output_size = (source.width + 2*margin_x, source.height + 2*margin_y)
# Create a white background
background = Image.new('RGB', output_size, (255, 255, 255))
# Calculate position to paste the original image
position = (margin_x, margin_y)
# Paste the original image onto the white background
background.paste(source, position)
# Create the mask
mask = Image.new('L', output_size, 255) # Start with all white
mask_draw = ImageDraw.Draw(mask)
mask_draw.rectangle([
(position[0] + overlap, position[1] + overlap),
(position[0] + source.width - overlap, position[1] + source.height - overlap)
], fill=0)
# Prepare the image for ControlNet
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
def clear_result():
return gr.update(value=None)
css = """
.gradio-container {
width: 1024px !important;
}
"""
title = """<h1 align="center">Diffusers Image Fill</h1>
<div align="center">Draw the mask over the subject you want to erase or change.</div>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(title)
run_button = gr.Button("Generate")
with gr.Row():
input_image = gr.Image(
type="pil",
label="Input Image",
sources=["upload"],
)
result = ImageSlider(
interactive=False,
label="Generated Image",
)
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=fill_image,
inputs=[input_image, model_selection],
outputs=result,
)
demo.launch(share=False)
|