SeyedAli commited on
Commit
870faff
·
1 Parent(s): 554917a

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- import gradio as gr
2
- import tempfile
3
- from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
4
- import torch
5
- from PIL import Image
6
-
7
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
-
9
- model = VisionEncoderDecoderModel.from_pretrained("SeyedAli/Persian-Image-Captioning-VIT-GPT")
10
- feature_extractor = ViTImageProcessor.from_pretrained("SeyedAli/Persian-Image-Captioning-VIT-GPT")
11
- tokenizer = AutoTokenizer.from_pretrained("SeyedAli/Persian-Image-Captioning-VIT-GPT")
12
-
13
- model=model.to(device)
14
-
15
- max_length = 32
16
- num_beams = 4
17
- gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
18
- def predict_step(image_paths):
19
- images = []
20
- for image_path in image_paths:
21
- i_image = Image.open(image_path)
22
- if i_image.mode != "RGB":
23
- i_image = i_image.convert(mode="RGB")
24
-
25
- images.append(i_image)
26
-
27
- pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
28
- pixel_values = pixel_values.to(device)
29
-
30
- output_ids = model.generate(pixel_values, **gen_kwargs)
31
-
32
- preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
33
- preds = [pred.strip() for pred in preds]
34
- return run_transaltion_model(preds[0])[0]
35
-
36
- def ImageCaptioning(image):
37
- with tempfile.NamedTemporaryFile(suffix=".png") as temp_image_file:
38
- # Copy the contents of the uploaded image file to the temporary file
39
- Image.fromarray(image).save(temp_image_file.name)
40
- # Load the image file using Pillow
41
- caption=predict_step([temp_image_file.name])
42
- return caption
43
-
44
- iface = gr.Interface(fn=ImageCaptioning, inputs="image", outputs="text")
45
- iface.launch(share=False)