File size: 6,095 Bytes
5b1f3e5
 
 
 
 
 
 
 
 
 
 
6987dda
5b1f3e5
 
 
 
 
6987dda
 
5b1f3e5
 
 
 
 
 
 
d282738
5b1f3e5
 
 
7b8f80d
5b1f3e5
 
 
 
 
 
 
6987dda
 
 
 
 
 
5b1f3e5
bf319ef
6987dda
 
 
 
 
 
5b1f3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85eac3d
5b1f3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eef9cf
5b1f3e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
from __future__ import annotations

import os
import random
import time

import gradio as gr
import numpy as np
import PIL.Image

from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline

from lcm_scheduler import LCMScheduler
from lcm_ov_pipeline import OVLatentConsistencyModelPipeline

from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel

import os
from tqdm import tqdm
import gradio_user_history as gr_user_history

from concurrent.futures import ThreadPoolExecutor
import uuid

DESCRIPTION = '''# Image Creation
'''

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"

model_id = "deinferno/LCM_Dreamshaper_v7-openvino"
batch_size = 1
width = int(os.getenv("IMAGE_WIDTH", "512"))
height = int(os.getenv("IMAGE_HEIGHT", "512"))
num_images = int(os.getenv("NUM_IMAGES", "1"))

class CustomOVModelVaeDecoder(OVModelVaeDecoder):
    def __init__(
        self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
    ):
        super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)

scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""})

# Inject TAESD

taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)

pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipe.compile()

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
    unique_name = str(uuid.uuid4()) + '.png'
    img.save(unique_name)
    gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
    return unique_name

def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
    paths = []
    with ThreadPoolExecutor() as executor:
        paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
    return paths

def generate(
    prompt: str,
    seed: int = 0,
    guidance_scale: float = 8.0,
    num_inference_steps: int = 4,
    randomize_seed: bool = False,
    progress = gr.Progress(track_tqdm=True),
    profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
    global batch_size
    global width
    global height
    global num_images

    seed = randomize_seed_fn(seed, randomize_seed)
    np.random.seed(seed)
    start_time = time.time()
    result = pipe(
        prompt=prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        output_type="pil",
    ).images
    paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
    print(time.time() - start_time)
    return paths, seed

examples = [
    "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
    "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery",
        )
    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            randomize=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale for base",
                minimum=2,
                maximum=14,
                step=0.1,
                value=8.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps for base",
                minimum=1,
                maximum=8,
                step=1,
                value=4,
            )

    with gr.Accordion("Past generations", open=False):
        gr_user_history.render()
    
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            seed,
            guidance_scale,
            num_inference_steps,
            randomize_seed
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(api_open=False)
    #demo.queue(max_size=3).launch()
    demo.launch()