|
import numpy as np |
|
import copy |
|
|
|
from tqdm.auto import trange |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import * |
|
from diffusers.models.transformers import Transformer2DModel |
|
|
|
|
|
original_Transformer2DModel_forward = Transformer2DModel.forward |
|
|
|
|
|
def hacked_Transformer2DModel_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
cross_attention_kwargs = cross_attention_kwargs or {} |
|
cross_attention_kwargs['hidden_states_original_shape'] = hidden_states.shape |
|
return original_Transformer2DModel_forward( |
|
self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, class_labels, cross_attention_kwargs, |
|
attention_mask, encoder_attention_mask, return_dict) |
|
|
|
|
|
Transformer2DModel.forward = hacked_Transformer2DModel_forward |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): |
|
"""DPM-Solver++(2M).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigma_fn = lambda t: t.neg().exp() |
|
t_fn = lambda sigma: sigma.log().neg() |
|
old_denoised = None |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) |
|
h = t_next - t |
|
if old_denoised is None or sigmas[i + 1] == 0: |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised |
|
else: |
|
h_last = t - t_fn(sigmas[i - 1]) |
|
r = h_last / h |
|
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d |
|
old_denoised = denoised |
|
return x |
|
|
|
|
|
class KModel: |
|
def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012): |
|
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2 |
|
alphas = 1. - betas |
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) |
|
|
|
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 |
|
self.log_sigmas = self.sigmas.log() |
|
self.sigma_data = 1.0 |
|
self.unet = unet |
|
return |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
log_sigma = sigma.log() |
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) |
|
|
|
def get_sigmas_karras(self, n, rho=7.): |
|
ramp = torch.linspace(0, 1, n) |
|
min_inv_rho = self.sigma_min ** (1 / rho) |
|
max_inv_rho = self.sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return torch.cat([sigmas, sigmas.new_zeros([1])]) |
|
|
|
def __call__(self, x, sigma, **extra_args): |
|
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5 |
|
t = self.timestep(sigma) |
|
cfg_scale = extra_args['cfg_scale'] |
|
eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] |
|
eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] |
|
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) |
|
return x - noise_pred * sigma[:, None, None, None] |
|
|
|
|
|
class OmostSelfAttnProcessor: |
|
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
hidden_states = torch.nn.functional.scaled_dot_product_attention( |
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.to_out[0](hidden_states) |
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class OmostCrossAttnProcessor: |
|
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs): |
|
B, C, H, W = hidden_states_original_shape |
|
|
|
conds = [] |
|
masks = [] |
|
|
|
for m, c in encoder_hidden_states: |
|
m = torch.nn.functional.interpolate(m[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, c.size(1)) |
|
conds.append(c) |
|
masks.append(m) |
|
|
|
conds = torch.cat(conds, dim=1) |
|
masks = torch.cat(masks, dim=1) |
|
|
|
mask_bool = masks > 0.5 |
|
mask_scale = (H * W) / torch.sum(masks, dim=0, keepdim=True) |
|
|
|
batch_size, sequence_length, _ = conds.shape |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(conds) |
|
value = attn.to_v(conds) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
mask_bool = mask_bool[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1) |
|
mask_scale = mask_scale[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1) |
|
|
|
sim = query @ key.transpose(-2, -1) * attn.scale |
|
sim = sim * mask_scale.to(sim) |
|
sim.masked_fill_(mask_bool.logical_not(), float("-inf")) |
|
sim = sim.softmax(dim=-1) |
|
|
|
h = sim @ value |
|
h = h.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
|
h = attn.to_out[0](h) |
|
h = attn.to_out[1](h) |
|
return h |
|
|
|
|
|
class StableDiffusionXLOmostPipeline(StableDiffusionXLImg2ImgPipeline): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.k_model = KModel(unet=self.unet) |
|
|
|
attn_procs = {} |
|
for name in self.unet.attn_processors.keys(): |
|
if name.endswith("attn2.processor"): |
|
attn_procs[name] = OmostCrossAttnProcessor() |
|
else: |
|
attn_procs[name] = OmostSelfAttnProcessor() |
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
return |
|
|
|
@torch.inference_mode() |
|
def encode_bag_of_subprompts_greedy(self, prefixes: list[str], suffixes: list[str]): |
|
device = self.text_encoder.device |
|
|
|
@torch.inference_mode() |
|
def greedy_partition(items, max_sum): |
|
bags = [] |
|
current_bag = [] |
|
current_sum = 0 |
|
|
|
for item in items: |
|
num = item['length'] |
|
if current_sum + num > max_sum: |
|
if current_bag: |
|
bags.append(current_bag) |
|
current_bag = [item] |
|
current_sum = num |
|
else: |
|
current_bag.append(item) |
|
current_sum += num |
|
|
|
if current_bag: |
|
bags.append(current_bag) |
|
|
|
return bags |
|
|
|
@torch.inference_mode() |
|
def get_77_tokens_in_torch(subprompt_inds, tokenizer): |
|
|
|
result = [tokenizer.bos_token_id] + subprompt_inds[:75] + [tokenizer.eos_token_id] + [tokenizer.pad_token_id] * 75 |
|
result = result[:77] |
|
result = torch.tensor([result]).to(device=device, dtype=torch.int64) |
|
return result |
|
|
|
@torch.inference_mode() |
|
def merge_with_prefix(bag): |
|
merged_ids_t1 = copy.deepcopy(prefix_ids_t1) |
|
merged_ids_t2 = copy.deepcopy(prefix_ids_t2) |
|
|
|
for item in bag: |
|
merged_ids_t1.extend(item['ids_t1']) |
|
merged_ids_t2.extend(item['ids_t2']) |
|
|
|
return dict( |
|
ids_t1=get_77_tokens_in_torch(merged_ids_t1, self.tokenizer), |
|
ids_t2=get_77_tokens_in_torch(merged_ids_t2, self.tokenizer_2) |
|
) |
|
|
|
@torch.inference_mode() |
|
def double_encode(pair_of_inds): |
|
inds = [pair_of_inds['ids_t1'], pair_of_inds['ids_t2']] |
|
text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
pooled_prompt_embeds = None |
|
prompt_embeds_list = [] |
|
|
|
for text_input_ids, text_encoder in zip(inds, text_encoders): |
|
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds.pooler_output |
|
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
|
|
prefix_length = 0 |
|
prefix_ids_t1 = [] |
|
prefix_ids_t2 = [] |
|
|
|
for prefix in prefixes: |
|
ids_t1 = self.tokenizer(prefix, truncation=False, add_special_tokens=False).input_ids |
|
ids_t2 = self.tokenizer_2(prefix, truncation=False, add_special_tokens=False).input_ids |
|
assert len(ids_t1) == len(ids_t2) |
|
prefix_length += len(ids_t1) |
|
prefix_ids_t1 += ids_t1 |
|
prefix_ids_t2 += ids_t2 |
|
|
|
|
|
|
|
allowed_suffix_length = 75 - prefix_length |
|
suffix_targets = [] |
|
|
|
for subprompt in suffixes: |
|
|
|
|
|
ids_t1 = self.tokenizer(subprompt, truncation=False, add_special_tokens=False).input_ids[:75] |
|
ids_t2 = self.tokenizer_2(subprompt, truncation=False, add_special_tokens=False).input_ids[:75] |
|
assert len(ids_t1) == len(ids_t2) |
|
suffix_targets.append(dict( |
|
length=len(ids_t1), |
|
ids_t1=ids_t1, |
|
ids_t2=ids_t2 |
|
)) |
|
|
|
|
|
|
|
suffix_targets = greedy_partition(suffix_targets, max_sum=allowed_suffix_length) |
|
targets = [merge_with_prefix(b) for b in suffix_targets] |
|
|
|
|
|
|
|
conds, poolers = [], [] |
|
|
|
for target in targets: |
|
cond, pooler = double_encode(target) |
|
conds.append(cond) |
|
poolers.append(pooler) |
|
|
|
conds_merged = torch.concat(conds, dim=1) |
|
poolers_merged = poolers[0] |
|
|
|
return dict(cond=conds_merged, pooler=poolers_merged) |
|
|
|
@torch.inference_mode() |
|
def all_conds_from_canvas(self, canvas_outputs, negative_prompt): |
|
mask_all = torch.ones(size=(90, 90), dtype=torch.float32) |
|
negative_cond, negative_pooler = self.encode_cropped_prompt_77tokens(negative_prompt) |
|
negative_result = [(mask_all, negative_cond)] |
|
|
|
positive_result = [] |
|
positive_pooler = None |
|
|
|
for item in canvas_outputs['bag_of_conditions']: |
|
current_mask = torch.from_numpy(item['mask']).to(torch.float32) |
|
current_prefixes = item['prefixes'] |
|
current_suffixes = item['suffixes'] |
|
|
|
current_cond = self.encode_bag_of_subprompts_greedy(prefixes=current_prefixes, suffixes=current_suffixes) |
|
|
|
if positive_pooler is None: |
|
positive_pooler = current_cond['pooler'] |
|
|
|
positive_result.append((current_mask, current_cond['cond'])) |
|
|
|
return positive_result, positive_pooler, negative_result, negative_pooler |
|
|
|
@torch.inference_mode() |
|
def encode_cropped_prompt_77tokens(self, prompt: str): |
|
device = self.text_encoder.device |
|
tokenizers = [self.tokenizer, self.tokenizer_2] |
|
text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
pooled_prompt_embeds = None |
|
prompt_embeds_list = [] |
|
|
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_input_ids = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds.pooler_output |
|
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
@torch.inference_mode() |
|
def __call__( |
|
self, |
|
initial_latent: torch.FloatTensor = None, |
|
strength: float = 1.0, |
|
num_inference_steps: int = 25, |
|
guidance_scale: float = 5.0, |
|
batch_size: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[dict] = None, |
|
): |
|
|
|
device = self.unet.device |
|
cross_attention_kwargs = cross_attention_kwargs or {} |
|
|
|
|
|
|
|
sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps / strength)) |
|
sigmas = sigmas[-(num_inference_steps + 1):].to(device) |
|
|
|
|
|
|
|
_, C, H, W = initial_latent.shape |
|
noise = randn_tensor((batch_size, C, H, W), generator=generator, device=device, dtype=self.unet.dtype) |
|
latents = initial_latent.to(noise) + noise * sigmas[0].to(noise) |
|
|
|
|
|
|
|
height, width = latents.shape[-2:] |
|
height = height * self.vae_scale_factor |
|
width = width * self.vae_scale_factor |
|
|
|
add_time_ids = list((height, width) + (0, 0) + (height, width)) |
|
add_time_ids = torch.tensor([add_time_ids], dtype=self.unet.dtype) |
|
add_neg_time_ids = add_time_ids.clone() |
|
|
|
|
|
|
|
latents = latents.to(device) |
|
add_time_ids = add_time_ids.repeat(batch_size, 1).to(device) |
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size, 1).to(device) |
|
prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in prompt_embeds] |
|
negative_prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in negative_prompt_embeds] |
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(batch_size, 1).to(noise) |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1).to(noise) |
|
|
|
|
|
|
|
sampler_kwargs = dict( |
|
cfg_scale=guidance_scale, |
|
positive=dict( |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}, |
|
cross_attention_kwargs=cross_attention_kwargs |
|
), |
|
negative=dict( |
|
encoder_hidden_states=negative_prompt_embeds, |
|
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids}, |
|
cross_attention_kwargs=cross_attention_kwargs |
|
) |
|
) |
|
|
|
|
|
|
|
results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False) |
|
|
|
return StableDiffusionXLPipelineOutput(images=results) |
|
|