File size: 13,726 Bytes
9ab270d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdeb859
9ab270d
 
 
 
 
fdeb859
9ab270d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdeb859
 
 
9ab270d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdeb859
9ab270d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# import gradio as gr
#
# import torch
#
# zero = torch.Tensor([0]).cuda()
# print(zero.device) # <-- 'cpu' 🤔
#
# @spaces.GPU
# def greet(n):
#     print(zero.device) # <-- 'cuda:0' 🤗
#     return f"Hello {zero + n} Tensor"
#
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
# demo.launch()

import os
import spaces

os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
HF_TOKEN = os.environ['hf_token'] if 'hf_token' in os.environ else None

import uuid
import torch
import numpy as np
import gradio as gr
import tempfile

gradio_temp_dir = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_temp_dir, exist_ok=True)

from threading import Thread

# Phi3 Hijack
from transformers.models.phi3.modeling_phi3 import Phi3PreTrainedModel

Phi3PreTrainedModel._supports_sdpa = True

from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from lib_omost.pipeline import StableDiffusionXLOmostPipeline
from chat_interface import ChatInterface

import lib_omost.canvas as omost_canvas


# SDXL

sdxl_name = 'SG161222/RealVisXL_V4.0'
# sdxl_name = 'stabilityai/stable-diffusion-xl-base-1.0'

tokenizer = CLIPTokenizer.from_pretrained(
    sdxl_name, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(
    sdxl_name, subfolder="tokenizer_2")
text_encoder = CLIPTextModel.from_pretrained(
    sdxl_name, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16", device_map="auto")
text_encoder_2 = CLIPTextModel.from_pretrained(
    sdxl_name, subfolder="text_encoder_2", torch_dtype=torch.float16, variant="fp16", device_map="auto")
vae = AutoencoderKL.from_pretrained(
    sdxl_name, subfolder="vae", torch_dtype=torch.bfloat16, variant="fp16", device_map="auto")  # bfloat16 vae
unet = UNet2DConditionModel.from_pretrained(
    sdxl_name, subfolder="unet", torch_dtype=torch.float16, variant="fp16", device_map="auto")

unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())

pipeline = StableDiffusionXLOmostPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    text_encoder_2=text_encoder_2,
    tokenizer_2=tokenizer_2,
    unet=unet,
    scheduler=None,  # We completely give up diffusers sampling system and use A1111's method
)

# LLM

# model_name = 'lllyasviel/omost-phi-3-mini-128k-8bits'
llm_name = 'lllyasviel/omost-llama-3-8b-4bits'
# model_name = 'lllyasviel/omost-dolphin-2.9-llama3-8b-4bits'

llm_model = AutoModelForCausalLM.from_pretrained(
    llm_name,
    torch_dtype=torch.bfloat16,  # This is computation type, not load/memory type. The loading quant type is baked in config.
    token=HF_TOKEN,
    device_map="auto"
)

llm_tokenizer = AutoTokenizer.from_pretrained(
    llm_name,
    token=HF_TOKEN
)


@torch.inference_mode()
def pytorch2numpy(imgs):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        y = y * 127.5 + 127.5
        y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        results.append(y)
    return results


@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
    h = h.movedim(-1, 1)
    return h


def resize_without_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)


@spaces.GPU
@torch.inference_mode()
def chat_fn(message: str, history: list, seed:int, temperature: float, top_p: float, max_new_tokens: int) -> str:
    np.random.seed(int(seed))
    torch.manual_seed(int(seed))

    conversation = [{"role": "system", "content": omost_canvas.system_prompt}]

    for user, assistant in history:
        if user is None or assistant is None:
            continue
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])

    conversation.append({"role": "user", "content": message})

    input_ids = llm_tokenizer.apply_chat_template(
        conversation, return_tensors="pt", add_generation_prompt=True).to(llm_model.device)

    streamer = TextIteratorStreamer(llm_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
    )

    if temperature == 0:
        generate_kwargs['do_sample'] = False

    Thread(target=llm_model.generate, kwargs=generate_kwargs).start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        # print(outputs)
        yield "".join(outputs)

    return


@torch.inference_mode()
def post_chat(history):
    history = [(user, assistant) for user, assistant in history if isinstance(user, str) and isinstance(assistant, str)]
    last_assistant = history[-1][1]
    canvas_outputs = None

    try:
        canvas = omost_canvas.Canvas.from_bot_response(last_assistant)
        canvas_outputs = canvas.process()
    except Exception as e:
        print('Last assistant response is not valid canvas:', e)

    return canvas_outputs, gr.update(visible=canvas_outputs is not None)


@spaces.GPU
@torch.inference_mode()
def diffusion_fn(chatbot, canvas_outputs, num_samples, seed, image_width, image_height,
                 highres_scale, steps, cfg, highres_steps, highres_denoise, negative_prompt):

    use_initial_latent = False
    eps = 0.05

    image_width, image_height = int(image_width // 64) * 64, int(image_height // 64) * 64

    rng = torch.Generator(unet.device).manual_seed(seed)

    positive_cond, positive_pooler, negative_cond, negative_pooler = pipeline.all_conds_from_canvas(canvas_outputs, negative_prompt)

    if use_initial_latent:
        initial_latent = torch.from_numpy(canvas_outputs['initial_latent'])[None].movedim(-1, 1) / 127.5 - 1.0
        initial_latent_blur = 40
        initial_latent = torch.nn.functional.avg_pool2d(
            torch.nn.functional.pad(initial_latent, (initial_latent_blur,) * 4, mode='reflect'),
            kernel_size=(initial_latent_blur * 2 + 1,) * 2, stride=(1, 1))
        initial_latent = torch.nn.functional.interpolate(initial_latent, (image_height, image_width))
        initial_latent = initial_latent.to(dtype=vae.dtype, device=vae.device)
        initial_latent = vae.encode(initial_latent).latent_dist.mode() * vae.config.scaling_factor
    else:
        initial_latent = torch.zeros(size=(num_samples, 4, image_height // 8, image_width // 8), dtype=torch.float32)

    initial_latent = initial_latent.to(dtype=unet.dtype, device=unet.device)

    latents = pipeline(
        initial_latent=initial_latent,
        strength=1.0,
        num_inference_steps=int(steps),
        batch_size=num_samples,
        prompt_embeds=positive_cond,
        negative_prompt_embeds=negative_cond,
        pooled_prompt_embeds=positive_pooler,
        negative_pooled_prompt_embeds=negative_pooler,
        generator=rng,
        guidance_scale=float(cfg),
    ).images

    latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
    pixels = vae.decode(latents).sample
    B, C, H, W = pixels.shape
    pixels = pytorch2numpy(pixels)

    if highres_scale > 1.0 + eps:
        pixels = [
            resize_without_crop(
                image=p,
                target_width=int(round(W * highres_scale / 64.0) * 64),
                target_height=int(round(H * highres_scale / 64.0) * 64)
            ) for p in pixels
        ]

        pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
        latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor

        latents = latents.to(device=unet.device, dtype=unet.dtype)

        latents = pipeline(
            initial_latent=latents,
            strength=highres_denoise,
            num_inference_steps=highres_steps,
            batch_size=num_samples,
            prompt_embeds=positive_cond,
            negative_prompt_embeds=negative_cond,
            pooled_prompt_embeds=positive_pooler,
            negative_pooled_prompt_embeds=negative_pooler,
            generator=rng,
            guidance_scale=float(cfg),
        ).images

        latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
        pixels = vae.decode(latents).sample
        pixels = pytorch2numpy(pixels)

    for i in range(len(pixels)):
        unique_hex = uuid.uuid4().hex
        image_path = os.path.join(gradio_temp_dir, f"{unique_hex}_{i}.png")
        image = Image.fromarray(pixels[i])
        image.save(image_path)
        chatbot = chatbot + [(None, (image_path, 'image'))]

    return chatbot


css = '''
code {white-space: pre-wrap !important;}
.gradio-container {max-width: none !important;}
.outer_parent {flex: 1;}
.inner_parent {flex: 1;}
footer {display: none !important; visibility: hidden !important;}
.translucent {display: none !important; visibility: hidden !important;}
'''

with gr.Blocks(fill_height=True, css=css) as demo:
    with gr.Row(elem_classes='outer_parent'):
        with gr.Column(scale=25):
            with gr.Row():
                retry_btn = gr.Button("🔄 Retry", variant="secondary", size="sm", min_width=60)
                undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm", min_width=60)
                clear_btn = gr.Button("⭐️ New Chat", variant="secondary", size="sm", min_width=60)

            seed = gr.Number(label="Random Seed", value=12345, precision=0)

            with gr.Accordion(open=True, label='Language Model'):
                with gr.Group():
                    with gr.Row():
                        temperature = gr.Slider(
                            minimum=0.0,
                            maximum=2.0,
                            step=0.01,
                            value=0.6,
                            label="Temperature")
                        top_p = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=0.9,
                            label="Top P")
                    max_new_tokens = gr.Slider(
                        minimum=128,
                        maximum=4096,
                        step=1,
                        value=4096,
                        label="Max New Tokens")
            with gr.Accordion(open=True, label='Image Diffusion Model'):
                with gr.Group():
                    with gr.Row():
                        image_width = gr.Slider(label="Image Width", minimum=256, maximum=2048, value=896, step=64)
                        image_height = gr.Slider(label="Image Height", minimum=256, maximum=2048, value=1152, step=64)

                    with gr.Row():
                        num_samples = gr.Slider(label="Image Number", minimum=1, maximum=12, value=1, step=1)
                        steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=100, value=25, step=1)

            with gr.Accordion(open=False, label='Advanced'):
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=5.0, step=0.01)
                highres_scale = gr.Slider(label="HR-fix Scale (\"1\" is disabled)", minimum=1.0, maximum=2.0, value=1.0, step=0.01)
                highres_steps = gr.Slider(label="Highres Fix Steps", minimum=1, maximum=100, value=20, step=1)
                highres_denoise = gr.Slider(label="Highres Fix Denoise", minimum=0.1, maximum=1.0, value=0.4, step=0.01)
                n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')

            render_button = gr.Button("Render the Image!", size='lg', variant="primary", visible=False)

            examples = gr.Dataset(
                samples=[
                    ['generate an image of the fierce battle of warriors and a dragon'],
                    ['change the dragon to a dinosaur']
                ],
                components=[gr.Textbox(visible=False)],
                label='Quick Prompts'
            )
        with gr.Column(scale=75, elem_classes='inner_parent'):
            canvas_state = gr.State(None)
            chatbot = gr.Chatbot(label='Omost', scale=1, bubble_full_width=True, render=False)
            chatInterface = ChatInterface(
                fn=chat_fn,
                post_fn=post_chat,
                post_fn_kwargs=dict(inputs=[chatbot], outputs=[canvas_state, render_button]),
                pre_fn=lambda: gr.update(visible=False),
                pre_fn_kwargs=dict(outputs=[render_button]),
                chatbot=chatbot,
                retry_btn=retry_btn,
                undo_btn=undo_btn,
                clear_btn=clear_btn,
                additional_inputs=[seed, temperature, top_p, max_new_tokens],
                examples=examples
            )

    render_button.click(
        fn=diffusion_fn, inputs=[
            chatInterface.chatbot, canvas_state,
            num_samples, seed, image_width, image_height, highres_scale,
            steps, cfg, highres_steps, highres_denoise, n_prompt
        ], outputs=[chatInterface.chatbot]).then(
        fn=lambda x: x, inputs=[
            chatInterface.chatbot
        ], outputs=[chatInterface.chatbot_state])

if __name__ == "__main__":
    demo.queue().launch(inbrowser=True, server_name='0.0.0.0')