|
import argparse |
|
import cv2 |
|
import glob |
|
import matplotlib |
|
import numpy as np |
|
import os |
|
import torch |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Depth Anything V2') |
|
|
|
parser.add_argument('--img-path', type=str) |
|
parser.add_argument('--input-size', type=int, default=518) |
|
parser.add_argument('--outdir', type=str, default='./vis_depth') |
|
|
|
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) |
|
|
|
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction') |
|
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette') |
|
|
|
args = parser.parse_args() |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' |
|
|
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
|
|
depth_anything = DepthAnythingV2(**model_configs[args.encoder]) |
|
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu')) |
|
depth_anything = depth_anything.to(DEVICE).eval() |
|
|
|
if os.path.isfile(args.img_path): |
|
if args.img_path.endswith('txt'): |
|
with open(args.img_path, 'r') as f: |
|
filenames = f.read().splitlines() |
|
else: |
|
filenames = [args.img_path] |
|
else: |
|
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) |
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
|
|
cmap = matplotlib.colormaps.get_cmap('Spectral_r') |
|
|
|
for k, filename in enumerate(filenames): |
|
print(f'Progress {k+1}/{len(filenames)}: {filename}') |
|
|
|
raw_image = cv2.imread(filename) |
|
|
|
depth = depth_anything.infer_image(raw_image, args.input_size) |
|
|
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
depth = depth.astype(np.uint8) |
|
|
|
if args.grayscale: |
|
depth = np.repeat(depth[..., np.newaxis], 3, axis=-1) |
|
else: |
|
depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8) |
|
|
|
if args.pred_only: |
|
cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), depth) |
|
else: |
|
split_region = np.ones((raw_image.shape[0], 50, 3), dtype=np.uint8) * 255 |
|
combined_result = cv2.hconcat([raw_image, split_region, depth]) |
|
|
|
cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), combined_result) |