|
import gradio as gr |
|
import cv2 |
|
import matplotlib |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
import tempfile |
|
from gradio_imageslider import ImageSlider |
|
from huggingface_hub import hf_hub_download |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
css = """ |
|
#img-display-container { |
|
max-height: 100vh; |
|
} |
|
#img-display-input { |
|
max-height: 80vh; |
|
} |
|
#img-display-output { |
|
max-height: 80vh; |
|
} |
|
#download { |
|
height: 62px; |
|
} |
|
""" |
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
encoder2name = { |
|
'vits': 'Small', |
|
'vitb': 'Base', |
|
'vitl': 'Large', |
|
'vitg': 'Giant', |
|
} |
|
encoder = 'vitl' |
|
model_name = encoder2name[encoder] |
|
model = DepthAnythingV2(**model_configs[encoder]) |
|
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") |
|
state_dict = torch.load(filepath, map_location="cpu") |
|
model.load_state_dict(state_dict) |
|
model = model.to(DEVICE).eval() |
|
|
|
title = "# Depth Anything V2" |
|
description1 = """Official demo for **Depth Anything V2**. |
|
Please refer to our [paper](https://arxiv.org/abs/2406.09414) for more details.""" |
|
description2 = """**Due to the issue with our V2 Github repositories, we temporarily upload the content to [Huggingface space](https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/README_Github.md).**""" |
|
|
|
@spaces.GPU |
|
def predict_depth(image): |
|
return model.infer_image(image) |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description1) |
|
gr.Markdown(description2) |
|
gr.Markdown("### Depth Prediction demo") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') |
|
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5) |
|
submit = gr.Button(value="Compute Depth") |
|
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",) |
|
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",) |
|
|
|
cmap = matplotlib.colormaps.get_cmap('Spectral_r') |
|
|
|
def on_submit(image): |
|
original_image = image.copy() |
|
|
|
h, w = image.shape[:2] |
|
|
|
depth = predict_depth(image[:, :, ::-1]) |
|
|
|
raw_depth = Image.fromarray(depth.astype('uint16')) |
|
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) |
|
raw_depth.save(tmp_raw_depth.name) |
|
|
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
depth = depth.astype(np.uint8) |
|
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) |
|
|
|
gray_depth = Image.fromarray(depth) |
|
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) |
|
gray_depth.save(tmp_gray_depth.name) |
|
|
|
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name] |
|
|
|
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file]) |
|
|
|
example_files = os.listdir('assets/examples') |
|
example_files.sort() |
|
example_files = [os.path.join('assets/examples', filename) for filename in example_files] |
|
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit) |
|
|
|
|
|
if __name__ == '__main__': |
|
demo.queue().launch(share=True) |
|
|