Sephfox commited on
Commit
ef2bbfd
·
verified ·
1 Parent(s): ce1974e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -43
app.py CHANGED
@@ -1,64 +1,89 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Import the Carmen module. (Ensure that the repository is installed and accessible.)
5
+ from carmen.sentience import analyze_sentience
 
 
6
 
7
+ # Initialize the chat client.
8
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
10
+ def chat_and_sentience(message, history, system_message, max_tokens, temperature, top_p):
11
+ # Prepare messages for the LLM conversation.
 
 
 
 
 
 
12
  messages = [{"role": "system", "content": system_message}]
13
+ for user_msg, assistant_msg in history:
14
+ if user_msg:
15
+ messages.append({"role": "user", "content": user_msg})
16
+ if assistant_msg:
17
+ messages.append({"role": "assistant", "content": assistant_msg})
 
 
18
  messages.append({"role": "user", "content": message})
19
+
20
  response = ""
21
+ # Generate chat response via streaming.
22
+ for chat in client.chat_completion(
23
  messages,
24
  max_tokens=max_tokens,
25
  stream=True,
26
  temperature=temperature,
27
  top_p=top_p,
28
  ):
29
+ token = chat.choices[0].delta.content
 
30
  response += token
31
+ # Update the UI with the intermediate chat history; sentiment analysis hasn't run yet.
32
+ yield [history + [(message, response)], None]
33
+
34
+ # Once the full response is assembled, perform sentience analysis using Carmen.
35
+ # The function analyze_sentience is assumed to return a dictionary or list of sentiment scores/labels.
36
+ sentiment_results = analyze_sentience(response)
37
+
38
+ # Format the results for display. Adjust the formatting based on the actual output of analyze_sentience.
39
+ if isinstance(sentiment_results, dict):
40
+ sentiment_str = "\n".join([f"{k}: {v:.2f}" for k, v in sentiment_results.items()])
41
+ elif isinstance(sentiment_results, list):
42
+ sentiment_str = "\n".join([f"{item['label']}: {item['score']:.2f}" for item in sentiment_results])
43
+ else:
44
+ sentiment_str = str(sentiment_results)
45
+
46
+ # Yield the final state: updated chat history and the sentiment analysis result.
47
+ yield [history + [(message, response)], sentiment_str]
48
 
49
+ # Build the UI with gr.Blocks.
50
+ with gr.Blocks() as demo:
51
+ with gr.Row():
52
+ chatbot = gr.Chatbot(label="Chat")
53
+ with gr.Row():
54
+ sentiment_box = gr.Textbox(
55
+ label="Sentience Moment Scanner",
56
+ lines=4,
57
+ placeholder="Emotion analysis will appear here..."
58
+ )
59
+ with gr.Row():
60
+ message_input = gr.Textbox(label="Your Message")
61
+ with gr.Row():
62
+ system_message_input = gr.Textbox(value="You are a friendly Chatbot.", label="System Message")
63
+ with gr.Row():
64
+ max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens")
65
+ with gr.Row():
66
+ temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
67
+ with gr.Row():
68
+ top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
69
+ submit_btn = gr.Button("Send")
70
 
71
+ # Use a state to track conversation history.
72
+ state = gr.State([])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ # Wire up the events: on click or pressing enter the chat and sentiment analysis runs.
75
+ submit_btn.click(
76
+ chat_and_sentience,
77
+ inputs=[message_input, state, system_message_input, max_tokens_slider, temperature_slider, top_p_slider],
78
+ outputs=[chatbot, sentiment_box],
79
+ show_progress=True
80
+ )
81
+ message_input.submit(
82
+ chat_and_sentience,
83
+ inputs=[message_input, state, system_message_input, max_tokens_slider, temperature_slider, top_p_slider],
84
+ outputs=[chatbot, sentiment_box],
85
+ show_progress=True
86
+ )
87
 
88
  if __name__ == "__main__":
89
  demo.launch()