Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import time
|
7 |
+
|
8 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
|
9 |
+
|
10 |
+
use_large_model = True
|
11 |
+
|
12 |
+
if use_large_model:
|
13 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
|
14 |
+
else:
|
15 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
16 |
+
|
17 |
+
device = "cpu"
|
18 |
+
midas.to(device)
|
19 |
+
|
20 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
21 |
+
|
22 |
+
if use_large_model:
|
23 |
+
transform = midas_transforms.default_transform
|
24 |
+
else:
|
25 |
+
transform = midas_transforms.small_transform
|
26 |
+
|
27 |
+
|
28 |
+
def depth(img):
|
29 |
+
original_image = img
|
30 |
+
cv_image = np.array(img)
|
31 |
+
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
|
32 |
+
|
33 |
+
input_batch = transform(img).to(device)
|
34 |
+
with torch.no_grad():
|
35 |
+
prediction = midas(input_batch)
|
36 |
+
|
37 |
+
prediction = torch.nn.functional.interpolate(
|
38 |
+
prediction.unsqueeze(1),
|
39 |
+
size=img.shape[:2],
|
40 |
+
mode="bicubic",
|
41 |
+
align_corners=False,
|
42 |
+
).squeeze()
|
43 |
+
|
44 |
+
output = prediction.cpu().numpy()
|
45 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
46 |
+
img = Image.fromarray(formatted)
|
47 |
+
|
48 |
+
# create new image with with original_image and img side by side
|
49 |
+
new_im = Image.new('RGB', (original_image.width * 2, original_image.height))
|
50 |
+
new_im.paste(original_image, (0,0))
|
51 |
+
new_im.paste(img, (original_image.width,0))
|
52 |
+
|
53 |
+
# save the image to a file: (removed for hosting on HF)
|
54 |
+
#new_im.save(f'RGBDs/{int(time.time())}_RGBD.png')
|
55 |
+
|
56 |
+
|
57 |
+
return new_im
|
58 |
+
|
59 |
+
|
60 |
+
inputs = gr.inputs.Image(type='pil', label="Original Image")
|
61 |
+
outputs = gr.outputs.Image(type="pil",label="Output Image")
|
62 |
+
|
63 |
+
title = "RGB to RGBD for Looking Glass (using MiDaS)"
|
64 |
+
description = "Takes an RGB image and creates the depth + combines to the RGB image. Depth is predicted by MiDaS. This is a demo of the Looking Glass. For more information, visit https://lookingglassfactory.com"
|
65 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>"
|
66 |
+
|
67 |
+
|
68 |
+
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article).launch()
|