File size: 2,226 Bytes
bd0305e 015885c bd0305e d14c800 015885c 1019a35 d14c800 00572fe 6f60281 040b554 1019a35 26dd269 8a546d4 c58f313 14e5da3 c58f313 e4f8042 8a546d4 9b522e7 e4f8042 d9b8972 14e5da3 040b554 c58f313 015885c 8a546d4 015885c 14e5da3 015885c c58f313 14e5da3 d0ede55 1019a35 14e5da3 a1cf708 b373db2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread
print(f"Starting to load the model to memory")
m = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-2-zephyr-1_6b", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True)
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b", trust_remote_code=True)
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
m = m.to(device)
print(f"Sucessfully loaded the model to the memory")
start_message = ""
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def chat(message, history):
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[1]})
chat.append({"role": "user", "content": message})
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# Tokenize the messages string
model_inputs = tok([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=0.75,
num_beams=1,
)
t = Thread(target=m.generate, kwargs=generate_kwargs)
t.start()
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
# print(new_text)
partial_text += new_text
# Yield an empty string to cleanup the message textbox and the updated conversation history
yield partial_text
demo = gr.ChatInterface(fn=chat, examples=["hello", "hola", "merhaba"], title="Stable LM 2 Zephyr 1.6b")
demo.launch() |