|
import torch |
|
|
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.builder import load_pretrained_model |
|
from llava.utils import disable_torch_init |
|
from llava.mm_utils import tokenizer_image_token |
|
from transformers.generation.streamers import TextIteratorStreamer |
|
|
|
from PIL import Image |
|
|
|
import requests |
|
from io import BytesIO |
|
|
|
from cog import BasePredictor, Input, Path, ConcatenateIterator |
|
import time |
|
import subprocess |
|
from threading import Thread |
|
|
|
import os |
|
os.environ["HUGGINGFACE_HUB_CACHE"] = os.getcwd() + "/weights" |
|
|
|
|
|
REPLICATE_WEIGHTS_URL = "https://weights.replicate.delivery/default" |
|
|
|
weights = [ |
|
{ |
|
"dest": "liuhaotian/llava-v1.5-13b", |
|
|
|
"src": "llava-v1.5-13b/006818fc465ebda4c003c0998674d9141d8d95f8", |
|
"files": [ |
|
"config.json", |
|
"generation_config.json", |
|
"pytorch_model-00001-of-00003.bin", |
|
"pytorch_model-00002-of-00003.bin", |
|
"pytorch_model-00003-of-00003.bin", |
|
"pytorch_model.bin.index.json", |
|
"special_tokens_map.json", |
|
"tokenizer.model", |
|
"tokenizer_config.json", |
|
] |
|
}, |
|
{ |
|
"dest": "openai/clip-vit-large-patch14-336", |
|
"src": "clip-vit-large-patch14-336/ce19dc912ca5cd21c8a653c79e251e808ccabcd1", |
|
"files": [ |
|
"config.json", |
|
"preprocessor_config.json", |
|
"pytorch_model.bin" |
|
], |
|
} |
|
] |
|
|
|
def download_json(url: str, dest: Path): |
|
res = requests.get(url, allow_redirects=True) |
|
if res.status_code == 200 and res.content: |
|
with dest.open("wb") as f: |
|
f.write(res.content) |
|
else: |
|
print(f"Failed to download {url}. Status code: {res.status_code}") |
|
|
|
def download_weights(baseurl: str, basedest: str, files: list[str]): |
|
basedest = Path(basedest) |
|
start = time.time() |
|
print("downloading to: ", basedest) |
|
basedest.mkdir(parents=True, exist_ok=True) |
|
for f in files: |
|
dest = basedest / f |
|
url = os.path.join(REPLICATE_WEIGHTS_URL, baseurl, f) |
|
if not dest.exists(): |
|
print("downloading url: ", url) |
|
if dest.suffix == ".json": |
|
download_json(url, dest) |
|
else: |
|
subprocess.check_call(["pget", url, str(dest)], close_fds=False) |
|
print("downloading took: ", time.time() - start) |
|
|
|
class Predictor(BasePredictor): |
|
def setup(self) -> None: |
|
"""Load the model into memory to make running multiple predictions efficient""" |
|
for weight in weights: |
|
download_weights(weight["src"], weight["dest"], weight["files"]) |
|
disable_torch_init() |
|
|
|
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model("liuhaotian/llava-v1.5-13b", model_name="llava-v1.5-13b", model_base=None, load_8bit=False, load_4bit=False) |
|
|
|
def predict( |
|
self, |
|
image: Path = Input(description="Input image"), |
|
prompt: str = Input(description="Prompt to use for text generation"), |
|
top_p: float = Input(description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens", ge=0.0, le=1.0, default=1.0), |
|
temperature: float = Input(description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic", default=0.2, ge=0.0), |
|
max_tokens: int = Input(description="Maximum number of tokens to generate. A word is generally 2-3 tokens", default=1024, ge=0), |
|
) -> ConcatenateIterator[str]: |
|
"""Run a single prediction on the model""" |
|
|
|
conv_mode = "llava_v1" |
|
conv = conv_templates[conv_mode].copy() |
|
|
|
image_data = load_image(str(image)) |
|
image_tensor = self.image_processor.preprocess(image_data, return_tensors='pt')['pixel_values'].half().cuda() |
|
|
|
|
|
|
|
|
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt |
|
conv.append_message(conv.roles[0], inp) |
|
|
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, timeout=20.0) |
|
|
|
with torch.inference_mode(): |
|
thread = Thread(target=self.model.generate, kwargs=dict( |
|
inputs=input_ids, |
|
images=image_tensor, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_tokens, |
|
streamer=streamer, |
|
use_cache=True)) |
|
thread.start() |
|
|
|
|
|
prepend_space = False |
|
for new_text in streamer: |
|
if new_text == " ": |
|
prepend_space = True |
|
continue |
|
if new_text.endswith(stop_str): |
|
new_text = new_text[:-len(stop_str)].strip() |
|
prepend_space = False |
|
elif prepend_space: |
|
new_text = " " + new_text |
|
prepend_space = False |
|
if len(new_text): |
|
yield new_text |
|
if prepend_space: |
|
yield " " |
|
thread.join() |
|
|
|
|
|
def load_image(image_file): |
|
if image_file.startswith('http') or image_file.startswith('https'): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
else: |
|
image = Image.open(image_file).convert('RGB') |
|
return image |
|
|
|
|