|
import argparse |
|
import datetime |
|
import json |
|
import os |
|
import time |
|
|
|
import gradio as gr |
|
import requests |
|
|
|
from llava.conversation import (default_conversation, conv_templates, |
|
SeparatorStyle) |
|
from llava.constants import LOGDIR |
|
from llava.utils import (build_logger, server_error_msg, |
|
violates_moderation, moderation_msg) |
|
import hashlib |
|
import subprocess |
|
import sys |
|
import time |
|
|
|
logger = build_logger("gradio_web_server", "gradio_web_server.log") |
|
|
|
headers = {"User-Agent": "LLaVA Client"} |
|
|
|
no_change_btn = gr.Button() |
|
enable_btn = gr.Button(interactive=True) |
|
disable_btn = gr.Button(interactive=False) |
|
|
|
priority = { |
|
"vicuna-13b": "aaaaaaa", |
|
"koala-13b": "aaaaaab", |
|
} |
|
|
|
|
|
def get_conv_log_filename(): |
|
t = datetime.datetime.now() |
|
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") |
|
return name |
|
|
|
|
|
def get_model_list(): |
|
ret = requests.post(args.controller_url + "/refresh_all_workers") |
|
assert ret.status_code == 200 |
|
ret = requests.post(args.controller_url + "/list_models") |
|
models = ret.json()["models"] |
|
models.sort(key=lambda x: priority.get(x, x)) |
|
logger.info(f"Models: {models}") |
|
return models |
|
|
|
|
|
get_window_url_params = """ |
|
function() { |
|
const params = new URLSearchParams(window.location.search); |
|
url_params = Object.fromEntries(params); |
|
console.log(url_params); |
|
return url_params; |
|
} |
|
""" |
|
|
|
|
|
def load_demo(url_params, request: gr.Request): |
|
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") |
|
|
|
dropdown_update = gr.Dropdown(visible=True) |
|
if "model" in url_params: |
|
model = url_params["model"] |
|
if model in models: |
|
dropdown_update = gr.Dropdown(value=model, visible=True) |
|
|
|
state = default_conversation.copy() |
|
return state, dropdown_update |
|
|
|
|
|
def load_demo_refresh_model_list(request: gr.Request): |
|
logger.info(f"load_demo. ip: {request.client.host}") |
|
models = get_model_list() |
|
state = default_conversation.copy() |
|
dropdown_update = gr.Dropdown( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else "" |
|
) |
|
return state, dropdown_update |
|
|
|
|
|
def vote_last_response(state, vote_type, model_selector, request: gr.Request): |
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(time.time(), 4), |
|
"type": vote_type, |
|
"model": model_selector, |
|
"state": state.dict(), |
|
"ip": request.client.host, |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
|
|
def upvote_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"upvote. ip: {request.client.host}") |
|
vote_last_response(state, "upvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def downvote_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"downvote. ip: {request.client.host}") |
|
vote_last_response(state, "downvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def flag_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"flag. ip: {request.client.host}") |
|
vote_last_response(state, "flag", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def regenerate(state, masked_image, image_process_mode, request: gr.Request): |
|
logger.info(f"regenerate. ip: {request.client.host}") |
|
state.messages[-1][-1] = None |
|
prev_human_msg = state.messages[-2] |
|
if type(prev_human_msg[1]) in (tuple, list): |
|
prev_human_msg[1] = (*prev_human_msg[1][:3], image_process_mode) |
|
state.skip_next = False |
|
|
|
state.messages[-2] = [ |
|
state.messages[-2][0], |
|
(state.messages[-2][1][0],masked_image, state.messages[-2][1][2], state.messages[-2][1][3]) |
|
] |
|
|
|
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 |
|
|
|
|
|
def clear_history(request: gr.Request): |
|
logger.info(f"clear_history. ip: {request.client.host}") |
|
state = default_conversation.copy() |
|
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 |
|
|
|
|
|
|
|
def add_text_wCLS(state, text, masked_image, image_process_mode, imagebox, request: gr.Request): |
|
logger.info(f"add_text_withcls. ip: {request.client.host}. len: {len(text)}") |
|
|
|
if len(text) <= 0 and masked_image is None and imagebox is None: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 |
|
if args.moderate: |
|
flagged = violates_moderation(text) |
|
if flagged: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( |
|
no_change_btn,) * 5 |
|
|
|
text = text[:1536] |
|
if imagebox is not None: |
|
text = text[:1200] |
|
if '<image>' not in text: |
|
text = text + '\n<image>' |
|
text = (text, masked_image, imagebox, image_process_mode) |
|
state = default_conversation.copy() |
|
state.append_message(state.roles[0], text) |
|
state.append_message(state.roles[1], None) |
|
state.skip_next = False |
|
state.cls=True |
|
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 |
|
|
|
|
|
def add_text(state, text, masked_image, image_process_mode, imagebox, request: gr.Request): |
|
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") |
|
|
|
if len(text) <= 0 and masked_image is None and imagebox is None: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 |
|
if args.moderate: |
|
flagged = violates_moderation(text) |
|
if flagged: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( |
|
no_change_btn,) * 5 |
|
|
|
text = text[:1536] |
|
if imagebox is not None: |
|
text = text[:1200] |
|
if '<image>' not in text: |
|
text = text + '\n<image>' |
|
text = (text, masked_image, imagebox, image_process_mode) |
|
state = default_conversation.copy() |
|
state.append_message(state.roles[0], text) |
|
state.append_message(state.roles[1], None) |
|
state.skip_next = False |
|
state.cls=False |
|
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 |
|
|
|
|
|
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, raw_tokens, request: gr.Request): |
|
cls_flag = state.cls |
|
print(f">>>>>>>>CLS_FLAG_{cls_flag}") |
|
select_tokens = raw_tokens.strip('[]') |
|
select_tokens = list(map(int, select_tokens.split())) |
|
logger.info(f"http_bot. ip: {request.client.host}") |
|
start_tstamp = time.time() |
|
model_name = model_selector |
|
|
|
if state.skip_next: |
|
|
|
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 |
|
return |
|
|
|
if len(state.messages) == state.offset + 2: |
|
|
|
if "llava" in model_name.lower(): |
|
if 'llama-2' in model_name.lower(): |
|
template_name = "llava_llama_2" |
|
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): |
|
if 'orca' in model_name.lower(): |
|
template_name = "mistral_orca" |
|
elif 'hermes' in model_name.lower(): |
|
template_name = "chatml_direct" |
|
else: |
|
template_name = "mistral_instruct" |
|
elif 'llava-v1.6-34b' in model_name.lower(): |
|
template_name = "chatml_direct" |
|
elif "v1" in model_name.lower(): |
|
if 'mmtag' in model_name.lower(): |
|
template_name = "v1_mmtag" |
|
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): |
|
template_name = "v1_mmtag" |
|
else: |
|
template_name = "llava_v1" |
|
elif "mpt" in model_name.lower(): |
|
template_name = "mpt" |
|
else: |
|
if 'mmtag' in model_name.lower(): |
|
template_name = "v0_mmtag" |
|
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): |
|
template_name = "v0_mmtag" |
|
else: |
|
template_name = "llava_v0" |
|
elif "mpt" in model_name: |
|
template_name = "mpt_text" |
|
elif "llama-2" in model_name: |
|
template_name = "llama_2" |
|
else: |
|
template_name = "vicuna_v1" |
|
new_state = conv_templates[template_name].copy() |
|
new_state.append_message(new_state.roles[0], state.messages[-2][1]) |
|
new_state.append_message(new_state.roles[1], None) |
|
state = new_state |
|
|
|
|
|
controller_url = args.controller_url |
|
ret = requests.post(controller_url + "/get_worker_address", |
|
json={"model": model_name}) |
|
worker_addr = ret.json()["address"] |
|
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") |
|
|
|
|
|
if worker_addr == "": |
|
state.messages[-1][-1] = server_error_msg |
|
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) |
|
return |
|
|
|
|
|
prompt = state.get_prompt() |
|
|
|
all_images = state.get_images(return_pil=True) |
|
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] |
|
for image, hash in zip(all_images, all_image_hash): |
|
t = datetime.datetime.now() |
|
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") |
|
if not os.path.isfile(filename): |
|
os.makedirs(os.path.dirname(filename), exist_ok=True) |
|
image.save(filename) |
|
|
|
|
|
pload = { |
|
"model": model_name, |
|
"prompt": prompt, |
|
"temperature": float(temperature), |
|
"top_p": float(top_p), |
|
"max_new_tokens": min(int(max_new_tokens), 1536), |
|
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, |
|
"images": f'List of {len(state.get_images())} images: {all_image_hash}', |
|
"select_tokens":select_tokens, |
|
"cls_flag":cls_flag, |
|
} |
|
logger.info(f"==== request ====\n{pload}") |
|
state.cls=cls_flag |
|
pload['images'] = state.get_images() |
|
|
|
state.messages[-1][-1] = "▌" |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 |
|
|
|
try: |
|
|
|
response = requests.post(worker_addr + "/worker_generate_stream", |
|
headers=headers, json=pload, stream=True, timeout=20) |
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): |
|
if chunk: |
|
data = json.loads(chunk.decode()) |
|
if data["error_code"] == 0: |
|
output = data["text"][len(prompt):].strip() |
|
state.messages[-1][-1] = output + "▌" |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 |
|
else: |
|
output = data["text"] + f" (error_code: {data['error_code']})" |
|
state.messages[-1][-1] = output |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) |
|
return |
|
time.sleep(0.03) |
|
except requests.exceptions.RequestException as e: |
|
state.messages[-1][-1] = server_error_msg |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) |
|
return |
|
|
|
state.messages[-1][-1] = state.messages[-1][-1][:-1] |
|
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 |
|
|
|
finish_tstamp = time.time() |
|
logger.info(f"{output}") |
|
|
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(finish_tstamp, 4), |
|
"type": "chat", |
|
"model": model_name, |
|
"start": round(start_tstamp, 4), |
|
"finish": round(finish_tstamp, 4), |
|
"state": state.dict(), |
|
"images": all_image_hash, |
|
"ip": request.client.host, |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
title_markdown = (""" |
|
# VisionZip: Longer is Better but Not Necessary in Vision Language Models |
|
[[Code](https://github.com/dvlab-research/VisionZip)] [[Demo-Visualizer](http://202.104.135.156:11030)] [[Usage-Video](https://youtu.be/9GNIJy4U6-k?si=jcWIJ2O0IjB4aamm)] [[Intro-Video](https://youtu.be/sytaAzmxxpo?si=IieArmQ7YNf2dVyM)] |
|
|
|
This demo allows users to manually select which visual tokens to send to the LLM to observe how different visual tokens impact the final response. |
|
|
|
### Instructions: |
|
1. Upload an image. |
|
2. Select the visual tokens. |
|
3. Generate the answer. |
|
|
|
For a step-by-step guide, refer to the [Usage Video](https://youtu.be/9GNIJy4U6-k?si=jcWIJ2O0IjB4aamm). |
|
""") |
|
|
|
tos_markdown = (""" |
|
### Terms of use |
|
By using this service, users are required to agree to the following terms: |
|
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. |
|
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. |
|
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. |
|
""") |
|
|
|
|
|
learn_more_markdown = (""" |
|
### License |
|
The service is a research preview intended for non-commercial use only, subject to the [License](https://github.com/dvlab-research/VisionZip/blob/main/LICENSE) of VisionZip, model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
""") |
|
|
|
block_css = """ |
|
|
|
#buttons button { |
|
min-width: min(120px,100%); |
|
} |
|
|
|
""" |
|
import gradio as gr |
|
import numpy as np |
|
|
|
import numpy as np |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
def create_mask(image, grid_vet): |
|
if image is None: |
|
return None |
|
|
|
image = image.resize((336, 336)) |
|
|
|
|
|
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0)) |
|
draw = ImageDraw.Draw(overlay) |
|
|
|
grid_size = 14 |
|
grid_count = 24 |
|
|
|
for i in range(grid_count): |
|
for j in range(grid_count): |
|
|
|
left = j * grid_size |
|
top = i * grid_size |
|
right = left + grid_size |
|
bottom = top + grid_size |
|
|
|
|
|
if grid_vet[i][j] == 0: |
|
draw.rectangle([left, top, right, bottom], fill=(255, 255, 255, 178)) |
|
|
|
|
|
final_image = Image.alpha_composite(image.convert('RGBA'), overlay) |
|
|
|
|
|
return final_image.convert('RGB') |
|
|
|
def capture_coordinates(image, drawing): |
|
outputs = drawing['layers'][0][:, :, -1] |
|
|
|
non_zero_pixels = np.argwhere(outputs > 0) |
|
|
|
grid_size = 14 |
|
grid_count = 24 |
|
|
|
grid_vector = np.zeros((grid_count, grid_count), dtype=int) |
|
|
|
for y, x in non_zero_pixels: |
|
grid_x = x // grid_size |
|
grid_y = y // grid_size |
|
grid_vector[grid_y, grid_x] = 1 |
|
|
|
grid_vector_flat = grid_vector.flatten() |
|
index = np.where(grid_vector_flat==1)[0] |
|
final_image = create_mask(image,grid_vector) |
|
|
|
|
|
return str(index),final_image |
|
|
|
def calculate_dominant_tokens_192(image, model_selector,state): |
|
token_num=192 |
|
model_name = model_selector |
|
|
|
controller_url = args.controller_url |
|
|
|
ret = requests.post(controller_url + "/get_worker_address", |
|
json={"model": model_name}) |
|
worker_addr = ret.json()["address"] |
|
|
|
pload = { |
|
"images": [state.process_image(image, "Default")], |
|
"token_num":token_num, |
|
} |
|
|
|
response = requests.post(worker_addr + "/worker_get_visonzip",json=pload, timeout=20) |
|
|
|
select_idx = response.json()['token_idx'][0] |
|
grid_count=24 |
|
grid_vector = np.zeros((grid_count, grid_count), dtype=int) |
|
for idx in select_idx: |
|
row = idx // grid_count |
|
col = idx % grid_count |
|
grid_vector[row, col] = 1 |
|
|
|
final_image = create_mask(image,grid_vector) |
|
select_idx = np.array(select_idx) |
|
|
|
return str(select_idx), final_image |
|
|
|
def calculate_dominant_tokens_128(image, model_selector,state): |
|
|
|
|
|
token_num=128 |
|
model_name = model_selector |
|
|
|
controller_url = args.controller_url |
|
|
|
ret = requests.post(controller_url + "/get_worker_address", |
|
json={"model": model_name}) |
|
worker_addr = ret.json()["address"] |
|
|
|
pload = { |
|
"images": [state.process_image(image, "Default")], |
|
"token_num":token_num, |
|
} |
|
|
|
response = requests.post(worker_addr + "/worker_get_visonzip",json=pload, timeout=20) |
|
|
|
select_idx = response.json()['token_idx'][0] |
|
grid_count=24 |
|
grid_vector = np.zeros((grid_count, grid_count), dtype=int) |
|
for idx in select_idx: |
|
row = idx // grid_count |
|
col = idx % grid_count |
|
grid_vector[row, col] = 1 |
|
|
|
final_image = create_mask(image,grid_vector) |
|
select_idx = np.array(select_idx) |
|
|
|
return str(select_idx), final_image |
|
|
|
def calculate_dominant_tokens_64(image, model_selector,state): |
|
|
|
|
|
token_num=64 |
|
model_name = model_selector |
|
|
|
controller_url = args.controller_url |
|
|
|
ret = requests.post(controller_url + "/get_worker_address", |
|
json={"model": model_name}) |
|
worker_addr = ret.json()["address"] |
|
|
|
pload = { |
|
"images": [state.process_image(image, "Default")], |
|
"token_num":token_num, |
|
} |
|
|
|
response = requests.post(worker_addr + "/worker_get_visonzip",json=pload, timeout=20) |
|
|
|
select_idx = response.json()['token_idx'][0] |
|
grid_count=24 |
|
grid_vector = np.zeros((grid_count, grid_count), dtype=int) |
|
for idx in select_idx: |
|
row = idx // grid_count |
|
col = idx % grid_count |
|
grid_vector[row, col] = 1 |
|
|
|
final_image = create_mask(image,grid_vector) |
|
select_idx = np.array(select_idx) |
|
|
|
return str(select_idx), final_image |
|
|
|
from PIL import Image |
|
|
|
|
|
def resize_image(image): |
|
if image is None: |
|
return None |
|
return image.resize((336, 336)) |
|
|
|
def default_img(image): |
|
grid_count = 24 |
|
grid_vector = np.zeros((grid_count, grid_count), dtype=int) |
|
default_image = create_mask(image,grid_vector) |
|
return default_image |
|
|
|
def build_demo(embed_mode, cur_dir=None, concurrency_count=10): |
|
models = get_model_list() |
|
|
|
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER (No CLS)", container=False) |
|
|
|
with gr.Blocks(title="VisionZip", theme=gr.themes.Default(), css=block_css) as demo: |
|
state = gr.State() |
|
|
|
if not embed_mode: |
|
gr.Markdown(title_markdown) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Row(elem_id="model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False) |
|
|
|
imagebox = gr.Image(type="pil", label="Upload Image", interactive=True) |
|
image_process_mode = gr.Radio( |
|
["Crop", "Resize", "Pad", "Default"], |
|
value="Default", |
|
label="Preprocess for non-square image", visible=False) |
|
|
|
|
|
sketchbox = gr.Sketchpad( |
|
label="Select on the Image", |
|
height=250, |
|
brush=gr.Brush( |
|
colors=["#FF0000", "#0000FF", "#00FF00", "#FFFF00"], |
|
default_color="#FF0000", |
|
color_mode="defaults" |
|
) |
|
) |
|
|
|
get_coordinates_btn = gr.Button(value="Get the Selected Tokens") |
|
with gr.Row(): |
|
get_dominant64_btn = gr.Button(value="Get 64 Dominant Tokens") |
|
get_dominant128_btn = gr.Button(value="Get 128 Dominant Tokens") |
|
get_dominant192_btn = gr.Button(value="Get 192 Dominant Tokens") |
|
|
|
coordinates_output = gr.Textbox(label="Select Tokens Index", interactive=False) |
|
|
|
|
|
masked_image_output = gr.Image(type="pil", label="Selected Visual Tokens", interactive=False) |
|
|
|
get_coordinates_btn.click( |
|
capture_coordinates, |
|
[imagebox, sketchbox], |
|
[coordinates_output,masked_image_output] |
|
) |
|
get_dominant64_btn.click( |
|
calculate_dominant_tokens_64, |
|
[imagebox,model_selector,state], |
|
[coordinates_output,masked_image_output] |
|
|
|
) |
|
get_dominant128_btn.click( |
|
calculate_dominant_tokens_128, |
|
[imagebox,model_selector,state], |
|
[coordinates_output,masked_image_output] |
|
|
|
) |
|
get_dominant192_btn.click( |
|
calculate_dominant_tokens_192, |
|
[imagebox,model_selector,state], |
|
[coordinates_output,masked_image_output] |
|
|
|
) |
|
|
|
imagebox.change(fn=lambda img: resize_image(img), inputs=imagebox, outputs=sketchbox) |
|
|
|
|
|
imagebox.change( |
|
fn=lambda img: [default_img(img), ""] , |
|
inputs=imagebox, |
|
outputs=[masked_image_output, coordinates_output] |
|
) |
|
|
|
|
|
if cur_dir is None: |
|
cur_dir = os.path.dirname(os.path.abspath(__file__)) |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/llava/serve/examples/extreme_ironing.jpg", "What is unusual about this image?"], |
|
[f"{cur_dir}/llava/serve/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"], |
|
], inputs=[imagebox, textbox]) |
|
|
|
with gr.Accordion("Parameters", open=False) as parameter_row: |
|
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature") |
|
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P") |
|
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens") |
|
|
|
with gr.Column(scale=8): |
|
chatbot = gr.Chatbot( |
|
elem_id="chatbot", |
|
label="LLaVA Chatbot", |
|
height=650, |
|
layout="panel", |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
textbox.render() |
|
with gr.Column(scale=1, min_width=50): |
|
CLS_btn = gr.Button(value="Add CLS", variant="primary") |
|
with gr.Column(scale=1, min_width=50): |
|
submit_btn = gr.Button(value="No CLS", variant="primary") |
|
with gr.Row(elem_id="buttons") as button_row: |
|
upvote_btn = gr.Button(value="👍 Upvote", interactive=False) |
|
downvote_btn = gr.Button(value="👎 Downvote", interactive=False) |
|
flag_btn = gr.Button(value="⚠️ Flag", interactive=False) |
|
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) |
|
clear_btn = gr.Button(value="🗑️ Clear", interactive=False) |
|
|
|
|
|
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] |
|
upvote_btn.click( |
|
upvote_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn] |
|
) |
|
downvote_btn.click( |
|
downvote_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn] |
|
) |
|
flag_btn.click( |
|
flag_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn] |
|
) |
|
|
|
regenerate_btn.click( |
|
regenerate, |
|
[state, masked_image_output, image_process_mode], |
|
[state, chatbot, textbox] + btn_list |
|
).then( |
|
http_bot, |
|
[state, model_selector, temperature, top_p, max_output_tokens, coordinates_output], |
|
[state, chatbot] + btn_list, |
|
concurrency_limit=concurrency_count |
|
) |
|
|
|
clear_btn.click( |
|
clear_history, |
|
None, |
|
[state, chatbot, textbox, imagebox] + btn_list, |
|
queue=False |
|
) |
|
|
|
textbox.submit( |
|
add_text, |
|
[state, textbox, masked_image_output, image_process_mode, imagebox], |
|
[state, chatbot, textbox] + btn_list, |
|
queue=False |
|
).then( |
|
http_bot, |
|
[state, model_selector, temperature, top_p, max_output_tokens, coordinates_output], |
|
[state, chatbot] + btn_list, |
|
concurrency_limit=concurrency_count |
|
) |
|
|
|
submit_btn.click( |
|
add_text, |
|
[state, textbox, masked_image_output, image_process_mode, imagebox], |
|
[state, chatbot, textbox] + btn_list |
|
).then( |
|
http_bot, |
|
[state, model_selector, temperature, top_p, max_output_tokens, coordinates_output], |
|
[state, chatbot] + btn_list, |
|
concurrency_limit=concurrency_count |
|
) |
|
CLS_btn.click( |
|
add_text_wCLS, |
|
[state, textbox, masked_image_output, image_process_mode, imagebox], |
|
[state, chatbot, textbox] + btn_list |
|
).then( |
|
http_bot, |
|
[state, model_selector, temperature, top_p, max_output_tokens, coordinates_output], |
|
[state, chatbot] + btn_list, |
|
concurrency_limit=concurrency_count |
|
) |
|
|
|
if args.model_list_mode == "once": |
|
demo.load( |
|
load_demo, |
|
[url_params], |
|
[state, model_selector], |
|
js=get_window_url_params |
|
) |
|
elif args.model_list_mode == "reload": |
|
demo.load( |
|
load_demo_refresh_model_list, |
|
None, |
|
[state, model_selector], |
|
queue=False |
|
) |
|
else: |
|
raise ValueError(f"Unknown model list mode: {args.model_list_mode}") |
|
|
|
return demo |
|
|
|
def start_demo(args): |
|
demo = build_demo(args.embed) |
|
demo.queue( |
|
status_update_rate=10, api_open=False |
|
).launch(server_name=args.host, server_port=args.port, share=args.share) |
|
|
|
def start_controller(): |
|
logger.info("Starting the controller") |
|
controller_command = [ |
|
"python", |
|
"-m", |
|
"llava.serve.controller", |
|
"--host", |
|
"0.0.0.0", |
|
"--port", |
|
"10000", |
|
] |
|
return subprocess.Popen(controller_command) |
|
|
|
def start_worker(): |
|
return subprocess.Popen(['python', '-m', 'llava.serve.model_worker', '--host', '0.0.0.0', '--port', '40000', '--worker', 'http://localhost:40000', '--controller', 'http://localhost:10000', '--model-path', 'liuhaotian/llava-v1.5-7b']) |
|
|
|
def start_worker_13(): |
|
return subprocess.Popen(['python', '-m', 'llava.serve.model_worker', '--host', '0.0.0.0', '--port', '45000', '--worker', 'http://localhost:45000', '--controller', 'http://localhost:10000', '--model-path', 'liuhaotian/llava-v1.5-13b']) |
|
|
|
def download_llava(): |
|
command = ['huggingface-cli', 'download', '--resume-download', 'liuhaotian/llava-v1.5-7b'] |
|
|
|
|
|
result = subprocess.run(command, capture_output=True, text=True) |
|
|
|
|
|
print("STDOUT:", result.stdout) |
|
print("STDERR:", result.stderr) |
|
|
|
|
|
if result.returncode == 0: |
|
print("Download completed successfully.") |
|
else: |
|
print("Download failed.") |
|
|
|
def download_llava_13(): |
|
command = ['huggingface-cli', 'download', '--resume-download', 'liuhaotian/llava-v1.5-13b'] |
|
|
|
|
|
result = subprocess.run(command, capture_output=True, text=True) |
|
|
|
|
|
print("STDOUT:", result.stdout) |
|
print("STDERR:", result.stderr) |
|
|
|
|
|
if result.returncode == 0: |
|
print("Download completed successfully.") |
|
else: |
|
print("Download failed.") |
|
|
|
def download_clip(): |
|
command = ['huggingface-cli', 'download', '--resume-download', 'openai/clip-vit-large-patch14-336'] |
|
|
|
|
|
result = subprocess.run(command, capture_output=True, text=True) |
|
|
|
|
|
print("STDOUT:", result.stdout) |
|
print("STDERR:", result.stderr) |
|
|
|
|
|
if result.returncode == 0: |
|
print("Download completed successfully.") |
|
else: |
|
print("Download failed.") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--controller-url", type=str, default="http://localhost:10000") |
|
parser.add_argument("--concurrency-count", type=int, default=8) |
|
parser.add_argument("--model-list-mode", type=str, default="reload", |
|
choices=["once", "reload"]) |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument("--moderate", action="store_true") |
|
parser.add_argument("--embed", action="store_true") |
|
args = parser.parse_args() |
|
|
|
logger.info(f"args: {args}") |
|
|
|
download_clip() |
|
download_llava() |
|
download_llava_13() |
|
controller_proc = start_controller() |
|
|
|
worker_proc = start_worker() |
|
worker_proc_13 = start_worker_13() |
|
|
|
time.sleep(100) |
|
try: |
|
start_demo(args) |
|
except Exception as e: |
|
print(e) |
|
exit_status = 1 |
|
finally: |
|
worker_proc.kill() |
|
worker_proc_13.kill() |
|
controller_proc.kill() |
|
|
|
sys.exit(exit_status) |
|
|