|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
|
|
import os, subprocess |
|
import torch |
|
|
|
def setup(): |
|
install_cmds = [ |
|
['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'], |
|
['pip', 'install', 'open_clip_torch'], |
|
['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'], |
|
['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git'] |
|
] |
|
for cmd in install_cmds: |
|
print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8')) |
|
|
|
setup() |
|
|
|
|
|
print("Download preprocessed cache files...") |
|
CACHE_URLS = [ |
|
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl', |
|
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl', |
|
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl', |
|
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl', |
|
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl', |
|
] |
|
os.makedirs('cache', exist_ok=True) |
|
for url in CACHE_URLS: |
|
print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')) |
|
|
|
import sys |
|
sys.path.append('src/blip') |
|
sys.path.append('clip-interrogator') |
|
|
|
import gradio as gr |
|
from clip_interrogator import Config, Interrogator |
|
|
|
config = Config() |
|
config.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
config.blip_offload = False if torch.cuda.is_available() else True |
|
config.chunk_size = 2048 |
|
config.flavor_intermediate_count = 512 |
|
config.blip_num_beams = 64 |
|
|
|
ci = Interrogator(config) |
|
|
|
def inference(image, mode, best_max_flavors): |
|
image = image.convert('RGB') |
|
if mode == 'best': |
|
|
|
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) |
|
|
|
print("mode best: " + prompt_result) |
|
|
|
return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
|
|
elif mode == 'classic': |
|
|
|
prompt_result = ci.interrogate_classic(image) |
|
|
|
print("mode classic: " + prompt_result) |
|
|
|
return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
|
|
else: |
|
|
|
prompt_result = ci.interrogate_fast(image) |
|
|
|
print("mode fast: " + prompt_result) |
|
|
|
return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
" |
|
> |
|
<h1 style="font-weight: 600; margin-bottom: 7px;"> |
|
CLIP Interrogator 2.1 |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;"> |
|
Want to figure out what a good prompt might be to create new images like an existing one? |
|
<br />The CLIP Interrogator is here to get you answers! |
|
<br />This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model! |
|
</p> |
|
</div> |
|
""" |
|
|
|
article = """ |
|
<div style="text-align: center; max-width: 500px; margin: 0 auto;font-size: 94%;"> |
|
|
|
<p> |
|
Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/open-clip/clip_interrogator.ipynb">Google Colab</a> |
|
</p> |
|
<p> |
|
Has this been helpful to you? Follow Pharma on twitter |
|
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> |
|
and check out more tools at his |
|
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a> |
|
</p> |
|
</div> |
|
""" |
|
|
|
css = ''' |
|
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} |
|
a {text-decoration-line: underline; font-weight: 600;} |
|
.animate-spin { |
|
animation: spin 1s linear infinite; |
|
} |
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
#share-btn-container { |
|
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 15rem; |
|
} |
|
#share-btn { |
|
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; |
|
} |
|
#share-btn * { |
|
all: unset; |
|
} |
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
''' |
|
|
|
with gr.Blocks(css=css) as block: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
|
|
input_image = gr.Image(type='pil', elem_id="input-img") |
|
with gr.Row(): |
|
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best') |
|
flavor_input = gr.Slider(minimum=2, maximum=24, step=2, value=4, label='best mode max flavors') |
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
output_text = gr.Textbox(label="Description Output", elem_id="output-txt") |
|
|
|
with gr.Group(elem_id="share-btn-container"): |
|
community_icon = gr.HTML(community_icon_html, visible=True) |
|
loading_icon = gr.HTML(loading_icon_html, visible=True) |
|
share_button = gr.Button("Share with Community", elem_id="share-btn", visible=True) |
|
|
|
examples=[['27E894C4-9375-48A1-A95D-CB2425416B4B.png', "best",4], ['DB362F56-BA98-4CA1-A999-A25AA94B723B.png',"fast",4]] |
|
ex = gr.Examples(examples=examples, fn=inference, inputs=[input_image, mode_input, flavor_input], outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True) |
|
ex.dataset.headers = [""] |
|
|
|
gr.HTML(article) |
|
|
|
submit_btn.click(fn=inference, inputs=[input_image,mode_input,flavor_input], outputs=[output_text, share_button, community_icon, loading_icon], api_name="clipi2") |
|
share_button.click(None, [], [], _js=share_js) |
|
|
|
block.queue(max_size=32,concurrency_count=10).launch(show_api=False) |