Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[5]: | |
import streamlit as st | |
from PIL import Image | |
import torch | |
import torch | |
import requests | |
from transformers import BlipProcessor, BlipForQuestionAnswering,BlipImageProcessor, AutoProcessor | |
from transformers import BlipConfig | |
from datasets import load_dataset | |
from torch.utils.data import DataLoader | |
from tqdm.notebook import tqdm | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from IPython.display import display | |
text_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
image_processor = BlipImageProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
model = BlipForQuestionAnswering.from_pretrained(r"blip_model_v2_epo89" ) | |
def preprocess_image(image): | |
# Your image preprocessing logic here... | |
# Example: Resize image to 128x128 pixels | |
image = image.resize((128, 128)) | |
image_encoding = image_processor(image, | |
do_resize=True, | |
size=(128, 128), | |
return_tensors="pt") | |
return image_encoding["pixel_values"][0] | |
def preprocess_text(text, max_length=32): | |
# Your text preprocessing logic here... | |
encoding = text_processor( | |
None, | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=max_length, | |
return_tensors="pt" | |
) | |
for k, v in encoding.items(): | |
encoding[k] = v.squeeze() | |
return encoding | |
def predict(image, question): | |
# Preprocess image | |
pixel_values = preprocess_image(image).unsqueeze(0) | |
# Preprocess text | |
encoding = preprocess_text(question) | |
# Print shapes for debugging | |
#print("Pixel Values Shape:", pixel_values.shape) | |
#print("Input IDs Shape:", encoding['input_ids'].unsqueeze(0).shape) | |
# Perform prediction using your model | |
# Example: Replace this with your actual prediction logic | |
model.eval() | |
outputs = model.generate(pixel_values=pixel_values, input_ids=encoding['input_ids'].unsqueeze(0)) | |
prediction_result = text_processor.decode(outputs[0], skip_special_tokens=True) | |
return prediction_result | |
def main(): | |
# Set page title and configure page layout | |
st.set_page_config( | |
page_title="PathoAgent", | |
page_icon=":microscope:", | |
layout="wide" | |
) | |
# Add header with styled text | |
st.title(":microscope: PathoAgent") | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-color: #f1f1f1; | |
} | |
.header { | |
text-align: center; | |
padding: 20px; | |
background-color: #3498db; | |
} | |
.subheader { | |
color: #fff; | |
text-align: center; | |
padding-bottom: 20px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown("<div class='header'><h3 class='subheader'>Medical Image Analysis for Pathology</h3></div>", unsafe_allow_html=True) | |
st.markdown("<hr style='border: 1px solid #ddd;'>", unsafe_allow_html=True) | |
# Navigation bar | |
nav_option = st.sidebar.radio("Navigation", ["Home", "Sample Images", "Upload Image"]) | |
if nav_option == "Home": | |
home() | |
elif nav_option == "Sample Images": | |
sample_images() | |
elif nav_option == "Upload Image": | |
upload_image() | |
def home(): | |
st.header("Welcome to PathoAgent!") | |
st.write( | |
"PathoAgent is an AI-powered medical image analysis tool designed for pathology diagnostics. " | |
"It empowers healthcare professionals with accurate predictions and insights from medical images. " | |
"Choose an option from the sidebar to get started." | |
) | |
st.header("About PathoAgent") | |
st.write( | |
"PathoAgent leverages advanced VQA algorithms to analyze medical images related to pathology. " | |
"Whether you want to upload your own images or use our sample images, PathoAgent provides predictions for pathology-related questions. " | |
"Explore the features and capabilities to enhance your diagnostic process." | |
) | |
def sample_images(): | |
st.header("Sample Images") | |
# Sample images | |
example_image = { | |
"Sample 1": "img_0002.jpg", | |
} | |
# Button to load sample images | |
if st.button("Load Example Images"): | |
sample_image = Image.open(example_image).convert('RGB') | |
st.image(sample_image, caption=f"Example Image", use_column_width=True) | |
# Text input for each sample image | |
text_input = st.text_area(f"Input Question:") | |
# Predict button for each sample image | |
if st.button(f"Predict"): | |
if text_input: | |
# Perform prediction | |
prediction_result = predict(sample_image, text_input) | |
# Display input text | |
st.subheader(f"Input Question:") | |
st.write(text_input) | |
# Display prediction result | |
st.subheader(f"Prediction Result:") | |
st.write(prediction_result) | |
def upload_image(): | |
st.header("Upload Image") | |
# Image upload | |
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "jpeg"]) | |
# Text input | |
st.subheader("Input Question") | |
text_input = st.text_area("Enter text here:") | |
# Display uploaded image | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert('RGB') | |
st.image(image, caption="Uploaded Image.", use_column_width=True) | |
# Predict button | |
if st.button("Predict"): | |
if uploaded_file is not None and text_input: | |
# Perform prediction | |
prediction_result = predict(image, text_input) | |
# Display input text | |
st.subheader("Input Question:") | |
st.write(text_input) | |
# Display prediction result | |
st.subheader("Prediction Result:") | |
st.write(prediction_result) | |
if __name__ == "__main__": | |
main() | |