PathoAgent_2 / app.py
Sayed121's picture
Update app.py
9d4621a
#!/usr/bin/env python
# coding: utf-8
# In[5]:
import streamlit as st
from PIL import Image
import torch
import torch
import requests
from transformers import BlipProcessor, BlipForQuestionAnswering,BlipImageProcessor, AutoProcessor
from transformers import BlipConfig
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm.notebook import tqdm
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
text_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
image_processor = BlipImageProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = BlipForQuestionAnswering.from_pretrained(r"blip_model_v2_epo89" )
def preprocess_image(image):
# Your image preprocessing logic here...
# Example: Resize image to 128x128 pixels
image = image.resize((128, 128))
image_encoding = image_processor(image,
do_resize=True,
size=(128, 128),
return_tensors="pt")
return image_encoding["pixel_values"][0]
def preprocess_text(text, max_length=32):
# Your text preprocessing logic here...
encoding = text_processor(
None,
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
for k, v in encoding.items():
encoding[k] = v.squeeze()
return encoding
def predict(image, question):
# Preprocess image
pixel_values = preprocess_image(image).unsqueeze(0)
# Preprocess text
encoding = preprocess_text(question)
# Print shapes for debugging
#print("Pixel Values Shape:", pixel_values.shape)
#print("Input IDs Shape:", encoding['input_ids'].unsqueeze(0).shape)
# Perform prediction using your model
# Example: Replace this with your actual prediction logic
model.eval()
outputs = model.generate(pixel_values=pixel_values, input_ids=encoding['input_ids'].unsqueeze(0))
prediction_result = text_processor.decode(outputs[0], skip_special_tokens=True)
return prediction_result
def main():
# Set page title and configure page layout
st.set_page_config(
page_title="PathoAgent",
page_icon=":microscope:",
layout="wide"
)
# Add header with styled text
st.title(":microscope: PathoAgent")
st.markdown(
"""
<style>
body {
background-color: #f1f1f1;
}
.header {
text-align: center;
padding: 20px;
background-color: #3498db;
}
.subheader {
color: #fff;
text-align: center;
padding-bottom: 20px;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown("<div class='header'><h3 class='subheader'>Medical Image Analysis for Pathology</h3></div>", unsafe_allow_html=True)
st.markdown("<hr style='border: 1px solid #ddd;'>", unsafe_allow_html=True)
# Navigation bar
nav_option = st.sidebar.radio("Navigation", ["Home", "Sample Images", "Upload Image"])
if nav_option == "Home":
home()
elif nav_option == "Sample Images":
sample_images()
elif nav_option == "Upload Image":
upload_image()
def home():
st.header("Welcome to PathoAgent!")
st.write(
"PathoAgent is an AI-powered medical image analysis tool designed for pathology diagnostics. "
"It empowers healthcare professionals with accurate predictions and insights from medical images. "
"Choose an option from the sidebar to get started."
)
st.header("About PathoAgent")
st.write(
"PathoAgent leverages advanced VQA algorithms to analyze medical images related to pathology. "
"Whether you want to upload your own images or use our sample images, PathoAgent provides predictions for pathology-related questions. "
"Explore the features and capabilities to enhance your diagnostic process."
)
def sample_images():
st.header("Sample Images")
# Sample images
example_image = {
"Sample 1": "img_0002.jpg",
}
# Button to load sample images
if st.button("Load Example Images"):
sample_image = Image.open(example_image).convert('RGB')
st.image(sample_image, caption=f"Example Image", use_column_width=True)
# Text input for each sample image
text_input = st.text_area(f"Input Question:")
# Predict button for each sample image
if st.button(f"Predict"):
if text_input:
# Perform prediction
prediction_result = predict(sample_image, text_input)
# Display input text
st.subheader(f"Input Question:")
st.write(text_input)
# Display prediction result
st.subheader(f"Prediction Result:")
st.write(prediction_result)
def upload_image():
st.header("Upload Image")
# Image upload
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "jpeg"])
# Text input
st.subheader("Input Question")
text_input = st.text_area("Enter text here:")
# Display uploaded image
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption="Uploaded Image.", use_column_width=True)
# Predict button
if st.button("Predict"):
if uploaded_file is not None and text_input:
# Perform prediction
prediction_result = predict(image, text_input)
# Display input text
st.subheader("Input Question:")
st.write(text_input)
# Display prediction result
st.subheader("Prediction Result:")
st.write(prediction_result)
if __name__ == "__main__":
main()