Spaces:
Running
Running
SarowarSaurav
commited on
Commit
•
13ef1fa
1
Parent(s):
ba2ce75
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,56 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
-
# Load the
|
6 |
-
#
|
7 |
-
|
8 |
|
9 |
def identify_disease(image):
|
10 |
-
#
|
11 |
-
|
|
|
12 |
|
13 |
-
#
|
14 |
-
results =
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Define Gradio interface
|
20 |
interface = gr.Interface(
|
21 |
-
fn=identify_disease,
|
22 |
inputs=gr.inputs.Image(type="pil"),
|
23 |
outputs=[
|
24 |
-
gr.outputs.Image(type="pil", label="
|
25 |
-
gr.outputs.Dataframe(
|
26 |
],
|
27 |
-
title="
|
28 |
-
description="Upload an image of a
|
29 |
)
|
30 |
|
31 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
|
7 |
+
# Load the pre-trained YOLOv5 model
|
8 |
+
# Use 'yolov5s' or any available YOLO model from ultralytics
|
9 |
+
model = YOLO('yolov5s') # Change to a leaf disease detection model if available
|
10 |
|
11 |
def identify_disease(image):
|
12 |
+
# Convert the image to RGB if it's not
|
13 |
+
if image.mode != 'RGB':
|
14 |
+
image = image.convert('RGB')
|
15 |
|
16 |
+
# Perform inference
|
17 |
+
results = model(image)
|
18 |
|
19 |
+
# Extract predictions
|
20 |
+
predictions = results[0]
|
21 |
+
boxes = predictions.boxes
|
22 |
+
labels = boxes.cls.cpu().numpy()
|
23 |
+
scores = boxes.conf.cpu().numpy()
|
24 |
+
class_names = model.names
|
25 |
+
|
26 |
+
# Annotate image with bounding boxes and labels
|
27 |
+
annotated_image = np.array(image)
|
28 |
+
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
|
29 |
+
x1, y1, x2, y2 = map(int, box)
|
30 |
+
class_name = class_names[int(label)]
|
31 |
+
confidence = f"{score * 100:.2f}%"
|
32 |
+
annotated_image = cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
33 |
+
annotated_image = cv2.putText(annotated_image, f"{class_name} {confidence}", (x1, y1 - 10),
|
34 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
35 |
+
|
36 |
+
# Convert annotated image back to PIL format
|
37 |
+
annotated_image = Image.fromarray(annotated_image)
|
38 |
+
|
39 |
+
# Prepare results for display
|
40 |
+
results_list = [{"Disease": class_names[int(label)], "Confidence": f"{score * 100:.2f}%"} for label, score in zip(labels, scores)]
|
41 |
+
|
42 |
+
return annotated_image, results_list
|
43 |
|
44 |
# Define Gradio interface
|
45 |
interface = gr.Interface(
|
46 |
+
fn=identify_disease,
|
47 |
inputs=gr.inputs.Image(type="pil"),
|
48 |
outputs=[
|
49 |
+
gr.outputs.Image(type="pil", label="Annotated Image"),
|
50 |
+
gr.outputs.Dataframe(headers=["Disease", "Confidence"], label="Predictions")
|
51 |
],
|
52 |
+
title="Leaf Disease Identifier with YOLOv5",
|
53 |
+
description="Upload an image of a leaf, and this tool will identify the disease with confidence scores."
|
54 |
)
|
55 |
|
56 |
# Launch the app
|