Sarath0x8f commited on
Commit
8ef6cb8
·
verified ·
1 Parent(s): 9c636d4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py CHANGED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_parse import LlamaParse
5
+ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
6
+ import os
7
+ from dotenv import load_dotenv
8
+ import gradio as gr
9
+
10
+ # Load environment variables
11
+ load_dotenv()
12
+
13
+ # Initialize the LLM and parser
14
+ llm = HuggingFaceInferenceAPI(
15
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
16
+ token=os.getenv("TOKEN")
17
+ )
18
+
19
+ parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
20
+ file_extractor = {'.pdf': parser, '.docx': parser, '.doc': parser}
21
+
22
+ # Embedding model and index initialization (to be populated by uploaded files)
23
+ embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
24
+
25
+ # Global variable to store documents loaded from user-uploaded files
26
+ vector_index = None
27
+
28
+ # File processing function
29
+ def load_files(file_path: str):
30
+ try:
31
+ global vector_index
32
+ document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
33
+ vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
34
+ print(f"parsing done {file_path}")
35
+ filename = os.path.basename(file_path)
36
+ return f"Ready to give response on give {filename}"
37
+ except Exception as e:
38
+ return f"An error occurred {e}"
39
+
40
+ def respond(message, history):
41
+ try:
42
+ query_engine = vector_index.as_query_engine(llm=llm)
43
+ bot_message = query_engine.query(message)
44
+ # output = ""
45
+ # for chr in bot_message:
46
+ # output += chr
47
+ # yield output
48
+ print(f"{datetime.now()}::message=>{str(bot_message)}")
49
+ return str(bot_message)
50
+ except Exception as e:
51
+ if e == "'NoneType' object has no attribute 'as_query_engine'":
52
+ return "upload file"
53
+ return f"an error occurred {e}"
54
+
55
+ # UI Setup
56
+ with gr.Blocks() as demo:
57
+ with gr.Row():
58
+ with gr.Column(scale=1):
59
+ file_input = gr.File(file_count="single", type='filepath')
60
+ with gr.Column():
61
+ clear = gr.ClearButton()
62
+ btn = gr.Button("Submit", variant='primary')
63
+ output = gr.Text(label='Vector Index')
64
+ with gr.Column(scale=2):
65
+ gr.ChatInterface(fn=respond,
66
+ chatbot=gr.Chatbot(height=500),
67
+ textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
68
+ examples=["summarize the document"]
69
+ )
70
+
71
+ # Action on button click to process file and load into index
72
+ btn.click(fn=load_files, inputs=file_input, outputs=output)
73
+ clear.click(lambda: [None]*2, outputs=[file_input, output])
74
+
75
+
76
+ # Launch the demo with public link option
77
+ if __name__ == "__main__":
78
+ demo.launch(share=True)