Spaces:
Running
Running
import streamlit as st | |
from transformers import ViTImageProcessor, AutoModelForImageClassification | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# Load the model and processor | |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
# Define prediction function | |
def predict_image(image): | |
try: | |
# Process the image and make prediction | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Get predicted class | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
return predicted_label | |
except Exception as e: | |
return str(e) | |
# Streamlit app | |
st.title("NSFW Image Classifier") | |
# Upload image file | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Predict and display result | |
prediction = predict_image(image) | |
st.write(f"Predicted Class: {prediction}") |