NFSW_Checker / app.py
yeftakun's picture
Update app.py
fffae6d verified
import streamlit as st
from transformers import ViTImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
from io import BytesIO
# Load the model and processor
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
# Define prediction function
def predict_image(image):
try:
# Process the image and make prediction
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# Get predicted class
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
return predicted_label
except Exception as e:
return str(e)
# Streamlit app
st.title("NSFW Image Classifier")
# Upload image file
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("")
st.write("Classifying...")
# Predict and display result
prediction = predict_image(image)
st.write(f"Predicted Class: {prediction}")