Santhosh54321 commited on
Commit
4e6539a
·
verified ·
1 Parent(s): 189179f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -164
app.py CHANGED
@@ -3,10 +3,10 @@ import requests
3
  import os
4
 
5
  # Fetch Hugging Face and Groq API keys from secrets
6
- Transalate_token = os.getenv('HUGGINGFACE_TOKEN')
7
- Image_Token = os.getenv('HUGGINGFACE_TOKEN')
8
- Content_Token = os.getenv('GROQ_API_KEY')
9
- Image_prompt_token = os.getenv('GROQ_API_KEY')
10
 
11
  # API Headers
12
  Translate = {"Authorization": f"Bearer {Transalate_token}"}
@@ -23,41 +23,45 @@ Image_Prompt = {
23
  # Translation Model API URL (Tamil to English)
24
  translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt"
25
 
26
- # Text-to-Image Model API URL
27
- image_generation_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- # Function to query Hugging Face translation model with try-except retry logic
 
 
 
30
  def translate_text(text):
31
  payload = {"inputs": text}
32
-
33
- # Try block to handle the first attempt
34
- try:
35
- response = requests.post(translation_url, headers=Translate, json=payload)
36
- response.raise_for_status() # Raise an error for bad status codes (non-200)
37
  result = response.json()
38
  translated_text = result[0]['generated_text']
39
  return translated_text
40
-
41
- except requests.exceptions.RequestException as e:
42
- st.warning(f"First attempt failed due to: {e}. Retrying...")
43
-
44
- # Retry the request once if it fails
45
- try:
46
- response = requests.post(translation_url, headers=Translate, json=payload)
47
- response.raise_for_status() # Raise an error for bad status codes (non-200)
48
- result = response.json()
49
- translated_text = result[0]['generated_text']
50
- return translated_text
51
-
52
- except requests.exceptions.RequestException as e:
53
- st.error(f"Second attempt failed: {e}")
54
- return None
55
 
56
  # Function to query Groq content generation model
57
- def generate_content(english_text, max_tokens, temperature):
58
  url = "https://api.groq.com/openai/v1/chat/completions"
59
  payload = {
60
- "model": "llama-3.1-70b-versatile",
61
  "messages": [
62
  {"role": "system", "content": "You are a creative and insightful writer."},
63
  {"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
@@ -92,150 +96,103 @@ def generate_image_prompt(english_text):
92
  return None
93
 
94
  # Function to generate an image from the prompt
95
- def generate_image(image_prompt):
96
  data = {"inputs": image_prompt}
97
- response = requests.post(image_generation_url, headers=Image_generation, json=data)
98
  if response.status_code == 200:
99
  return response.content
100
  else:
101
  st.error(f"Image Generation Error {response.status_code}: {response.text}")
102
  return None
103
 
104
- # User Guide content
105
- def user_guide():
106
- st.title("User Guide")
107
- st.write("""
108
- ### Welcome to FusionMind Multimodel ---> Your one stop solution for content creation.
109
-
110
-
111
- **How to use this app:**
112
-
113
- 1. **Input Tamil Text**:
114
- - You can either select one of the suggested Tamil phrases or input your own text. The app primarily focuses on Tamil inputs, but it supports a wide range of other languages as well (see the list below).
115
-
116
- 2. **Generate Translations**:
117
- - Once you've input your text, the app will automatically translate it to English. The translation model is a **many-to-one model**, meaning it can take input from various languages and translate it into English.
118
-
119
- 3. **Generate Educational Content**:
120
- - After translating the text into English, the app will generate **educational content** based on the translated input. You can adjust the creativity of the content generation using the temperature slider, and control the length of the output with the token limit setting.
121
-
122
- 4. **Generate Images**:
123
- - In addition to generating content, the app can also generate an **image** related to the translated content. You don’t need to worry about creating complex image prompts—FusionMind includes an automatic **image prompt generator** that will convert your input into a well-defined image prompt, ensuring better image generation results.
124
-
125
- ---
126
-
127
- ### Features:
128
-
129
- - **Multilingual Translation**:
130
- - FusionMind supports a **many-to-one translation model**, so you can input text in a wide variety of languages, not just Tamil. Below are the supported languages:
131
-
132
- - **Arabic (ar_AR)**, **Czech (cs_CZ)**, **German (de_DE)**, **English (en_XX)**, **Spanish (es_XX)**, **Estonian (et_EE)**, **Finnish (fi_FI)**, **French (fr_XX)**, **Gujarati (gu_IN)**, **Hindi (hi_IN)**, **Italian (it_IT)**, **Japanese (ja_XX)**, **Kazakh (kk_KZ)**, **Korean (ko_KR)**, **Lithuanian (lt_LT)**, **Latvian (lv_LV)**, **Burmese (my_MM)**, **Nepali (ne_NP)**, **Dutch (nl_XX)**, **Romanian (ro_RO)**, **Russian (ru_RU)**, **Sinhala (si_LK)**, **Turkish (tr_TR)**, **Vietnamese (vi_VN)**, **Chinese (zh_CN)**, **Afrikaans (af_ZA)**, **Azerbaijani (az_AZ)**, **Bengali (bn_IN)**, **Persian (fa_IR)**, **Hebrew (he_IL)**, **Croatian (hr_HR)**, **Indonesian (id_ID)**, **Georgian (ka_GE)**, **Khmer (km_KH)**, **Macedonian (mk_MK)**, **Malayalam (ml_IN)**, **Mongolian (mn_MN)**, **Marathi (mr_IN)**, **Polish (pl_PL)**, **Pashto (ps_AF)**, **Portuguese (pt_XX)**, **Swedish (sv_SE)**, **Swahili (sw_KE)**, **Tamil (ta_IN)**, **Telugu (te_IN)**, **Thai (th_TH)**, **Tagalog (tl_XX)**, **Ukrainian (uk_UA)**, **Urdu (ur_PK)**, **Xhosa (xh_ZA)**, **Galician (gl_ES)**, **Slovene (sl_SI)**.
133
-
134
- - **Temperature Adjustment**:
135
- - You can adjust the **temperature** of the content generation. A **higher temperature** makes the content more creative and varied, while a **lower temperature** generates more focused and deterministic responses.
136
-
137
- - **Token Limit**:
138
- - Set the **maximum number of tokens** for content generation. This allows you to control the length of the generated educational content.
139
-
140
- - **Automatic Retries**:
141
- - If a translation request fails due to any reason, the app is designed to **automatically retry**, ensuring a smooth experience.
142
-
143
- - **Auto-Generated Image Prompts**:
144
- - One of the unique features of FusionMind is the **auto-generated image prompts**. Even if you're not experienced in creating detailed prompts for image generation, the app will take care of this for you. It automatically converts the translated text or content into a well-defined prompt that produces more accurate and high-quality images.
145
-
146
- ---
147
-
148
- Enjoy the multimodal experience with **FusionMind** and explore its powerful translation, content generation, and image generation features!
149
-
150
- """)
151
-
152
  # Main Streamlit app
153
  def main():
154
- # Sidebar for navigation
155
- st.sidebar.title("Navigation")
156
- page = st.sidebar.radio("Go to", ["Home", "User Guide"])
157
-
158
- # If user selects "User Guide" page
159
- if page == "User Guide":
160
- user_guide()
161
- else:
162
- # Custom CSS for background, borders, and other styling
163
- st.markdown(
164
- """
165
- <style>
166
- body {
167
- background-image: url('https://wallpapercave.com/wp/wp4008910.jpg');
168
- background-size: cover;
169
- }
170
- .reportview-container {
171
- background: rgba(255, 255, 255, 0.85);
172
- padding: 2rem;
173
- border-radius: 10px;
174
- box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.1);
175
- }
176
- .result-container {
177
- border: 2px solid #4CAF50;
178
- padding: 20px;
179
- border-radius: 10px;
180
- margin-top: 20px;
181
- animation: fadeIn 2s ease;
182
- }
183
- @keyframes fadeIn {
184
- 0% { opacity: 0; }
185
- 100% { opacity: 1; }
186
- }
187
- .stButton button {
188
- background-color: #4CAF50;
189
- color: white;
190
- border-radius: 10px;
191
- padding: 10px;
192
- }
193
- .stButton button:hover {
194
- background-color: #45a049;
195
- transform: scale(1.05);
196
- transition: 0.2s ease-in-out;
197
- }
198
- </style>
199
- """, unsafe_allow_html=True
200
- )
201
-
202
- st.title("🅰️ℹ️ FusionMind ➡️ Multimodal")
203
-
204
- # Sidebar for temperature and token adjustment
205
- st.sidebar.header("Settings")
206
- temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7)
207
- max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200)
208
-
209
- # Suggested inputs
210
- st.write("## Suggested Inputs")
211
- suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"]
212
- selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions)
213
-
214
- # Input box for user
215
- tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion)
216
-
217
- if st.button("Generate"):
218
- # Step 1: Translation (Tamil to English)
219
- if tamil_input:
220
- st.write("### Translated English Text:")
221
- english_text = translate_text(tamil_input)
222
- if english_text:
223
- st.success(english_text)
224
-
225
- # Step 2: Generate Educational Content
226
- st.write("### Generated Educational Content:")
227
- with st.spinner('Generating content...'):
228
- content_output = generate_content(english_text, max_tokens, temperature)
229
- if content_output:
230
- st.success(content_output)
231
-
232
- # Step 3: Generate Image from the prompt
233
- st.write("### Generated Image:")
234
- with st.spinner('Generating image...'):
235
- image_prompt = generate_image_prompt(english_text)
236
- image_data = generate_image(image_prompt)
237
- if image_data:
238
- st.image(image_data, caption="Generated Image")
 
239
 
240
  if __name__ == "__main__":
241
  main()
 
3
  import os
4
 
5
  # Fetch Hugging Face and Groq API keys from secrets
6
+ Transalate_token = os.getenv('Translate')
7
+ Image_Token = os.getenv('Image_generation')
8
+ Content_Token = os.getenv('ContentGeneration')
9
+ Image_prompt_token = os.getenv('Prompt_generation')
10
 
11
  # API Headers
12
  Translate = {"Authorization": f"Bearer {Transalate_token}"}
 
23
  # Translation Model API URL (Tamil to English)
24
  translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt"
25
 
26
+ # Text-to-Image Model API URLs
27
+ image_generation_urls = {
28
+ "black-forest-labs/FLUX.1-schnell": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell",
29
+ "CompVis/stable-diffusion-v1-4": "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4",
30
+ "black-forest-labs/FLUX.1-dev": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
31
+ }
32
+
33
+ # Default image generation model
34
+ default_image_model = "black-forest-labs/FLUX.1-schnell"
35
+
36
+ # Content generation models
37
+ content_models = {
38
+ "llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
39
+ "llama3-8b-8192": "llama3-8b-8192",
40
+ "gemma2-9b-it": "gemma2-9b-it",
41
+ "mixtral-8x7b-32768": "mixtral-8x7b-32768"
42
+ }
43
 
44
+ # Default content generation model
45
+ default_content_model = "llama-3.1-70b-versatile"
46
+
47
+ # Function to query Hugging Face translation model
48
  def translate_text(text):
49
  payload = {"inputs": text}
50
+ response = requests.post(translation_url, headers=Translate, json=payload)
51
+ if response.status_code == 200:
 
 
 
52
  result = response.json()
53
  translated_text = result[0]['generated_text']
54
  return translated_text
55
+ else:
56
+ st.error(f"Translation Error {response.status_code}: {response.text}")
57
+ st.write(f'Please try after sometime 😥😥😥')
58
+ return None
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  # Function to query Groq content generation model
61
+ def generate_content(english_text, max_tokens, temperature, model):
62
  url = "https://api.groq.com/openai/v1/chat/completions"
63
  payload = {
64
+ "model": model,
65
  "messages": [
66
  {"role": "system", "content": "You are a creative and insightful writer."},
67
  {"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
 
96
  return None
97
 
98
  # Function to generate an image from the prompt
99
+ def generate_image(image_prompt, model_url):
100
  data = {"inputs": image_prompt}
101
+ response = requests.post(model_url, headers=Image_generation, json=data)
102
  if response.status_code == 200:
103
  return response.content
104
  else:
105
  st.error(f"Image Generation Error {response.status_code}: {response.text}")
106
  return None
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  # Main Streamlit app
109
  def main():
110
+ # Custom CSS for background, borders, and other styling
111
+ st.markdown(
112
+ """
113
+ <style>
114
+ body {
115
+ background-image: url('https://wallpapercave.com/wp/wp4008910.jpg');
116
+ background-size: cover;
117
+ }
118
+ .reportview-container {
119
+ background: rgba(255, 255, 255, 0.85);
120
+ padding: 2rem;
121
+ border-radius: 10px;
122
+ box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.1);
123
+ }
124
+ .result-container {
125
+ border: 2px solid #4CAF50;
126
+ padding: 20px;
127
+ border-radius: 10px;
128
+ margin-top: 20px;
129
+ animation: fadeIn 2s ease;
130
+ }
131
+ @keyframes fadeIn {
132
+ 0% { opacity: 0; }
133
+ 100% { opacity: 1; }
134
+ }
135
+ .stButton button {
136
+ background-color: #4CAF50;
137
+ color: white;
138
+ border-radius: 10px;
139
+ padding: 10px;
140
+ }
141
+ .stButton button:hover {
142
+ background-color: #45a049;
143
+ transform: scale(1.05);
144
+ transition: 0.2s ease-in-out;
145
+ }
146
+ </style>
147
+ """, unsafe_allow_html=True
148
+ )
149
+
150
+ st.title("🅰️ℹ️ FusionMind ➡️ Multimodal")
151
+
152
+ # Sidebar for temperature, token adjustment, and model selection
153
+ st.sidebar.header("Settings")
154
+ temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7)
155
+ max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200)
156
+
157
+ # Content generation model selection
158
+ content_model = st.sidebar.selectbox("Select Content Generation Model", list(content_models.keys()), index=0)
159
+
160
+ # Image generation model selection
161
+ image_model = st.sidebar.selectbox("Select Image Generation Model", list(image_generation_urls.keys()), index=0)
162
+
163
+ # Reminder about model availability
164
+ st.sidebar.warning("Note: Based on availability, some models might not work. Please try another model if an error occurs.")
165
+
166
+ # Suggested inputs
167
+ st.write("## Suggested Inputs")
168
+ suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"]
169
+ selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions)
170
+
171
+ # Input box for user
172
+ tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion)
173
+
174
+ if st.button("Generate"):
175
+ # Step 1: Translation (Tamil to English)
176
+ if tamil_input:
177
+ st.write("### Translated English Text:")
178
+ english_text = translate_text(tamil_input)
179
+ if english_text:
180
+ st.success(english_text)
181
+
182
+ # Step 2: Generate Educational Content
183
+ st.write("### Generated Educational Content:")
184
+ with st.spinner('Generating content...'):
185
+ content_output = generate_content(english_text, max_tokens, temperature, content_models[content_model])
186
+ if content_output:
187
+ st.success(content_output)
188
+
189
+ # Step 3: Generate Image from the prompt
190
+ st.write("### Generated Image:")
191
+ with st.spinner('Generating image...'):
192
+ image_prompt = generate_image_prompt(english_text)
193
+ image_data = generate_image(image_prompt, image_generation_urls[image_model])
194
+ if image_data:
195
+ st.image(image_data, caption="Generated Image")
196
 
197
  if __name__ == "__main__":
198
  main()