Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from datasets import load_dataset | |
from transformers import pipeline, SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech | |
model_id = "Sandiago21/speecht5_finetuned_voxpopuli_spanish" # update with your model id | |
# pipe = pipeline("automatic-speech-recognition", model=model_id) | |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
checkpoint = "microsoft/speecht5_tts" | |
processor = SpeechT5Processor.from_pretrained(checkpoint) | |
replacements = [ | |
("á", "a"), | |
("í", "i"), | |
("ñ", "n"), | |
("ó", "o"), | |
("ú", "u"), | |
("ü", "u"), | |
] | |
def cleanup_text(text): | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
return text | |
def synthesize_speech(text): | |
text = cleanup_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
return gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
syntesize_speech_gradio = gr.Interface( | |
synthesize_speech, | |
inputs = gr.Textbox(label="Text", placeholder="Type something here..."), | |
outputs=gr.Audio(), | |
).launch() | |