File size: 25,785 Bytes
3b33e85
 
 
 
 
 
 
 
 
2155881
69a51a2
 
2155881
3b33e85
 
 
 
2155881
6f49f3d
 
 
 
3b33e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e041e6
2155881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b33e85
 
 
d4919d2
3b33e85
 
69a51a2
3b33e85
 
2155881
 
 
 
 
 
 
343b013
 
 
 
2155881
343b013
 
 
 
 
 
3b33e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155881
 
3b33e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155881
3b33e85
 
 
 
2155881
 
 
3b33e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523873e
77a3a6a
 
 
523873e
69a51a2
 
b806539
 
 
 
 
 
69a51a2
 
b806539
 
 
69a51a2
 
 
b806539
 
 
 
8c8f224
3eb8b96
8c8f224
 
5fc7ca2
b806539
 
b2e9a93
69a51a2
6f49f3d
b806539
 
6f49f3d
 
d68d572
6f49f3d
 
 
 
 
 
 
38d39b3
6f49f3d
 
3565fb9
b806539
6f49f3d
 
b806539
 
6f49f3d
 
 
 
b2e9a93
 
6f49f3d
 
 
 
b806539
6f49f3d
 
 
 
b2e9a93
3b33e85
b806539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b33e85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
import gradio as gr

from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor, TimeoutError

import os
import re
import subprocess
import tempfile
import json
import datasets
import random
from typing import Tuple, Dict, Any, List
from sympy import N, simplify
from sympy.parsing.latex import parse_latex
from openai import OpenAI


# client = OpenAI(
#     base_url=os.environ.get("SERVER_URL"),
#     api_key=os.environ.get("HF_TOKEN"),
# )


@dataclass
class Config:
    model_id: str  # SELECT MODEL
    revision: str  # SELECT REVISION

    # Append an optional system prompt to each problem
    system_prompt: str

    # Number of samples to generate per problem
    num_samples: int
    num_generations: int
    # Generation parameters
    do_sample: bool
    temperature: float
    top_p: float
    top_k: int
    max_new_tokens: int
    restart_on_fail: bool

    # Enable 4-bit quantization
    is_quantized: bool

    # Run on train or test data?
    is_submission: bool = True if os.getenv("KAGGLE_IS_COMPETITION_RERUN") else False
    validation_set: str = "kaggle-validation-set-medium"

    notebook_time_limit: int = 9 * 60 * 60 - 15 * 60  # 9 hours - 15 minute buffer

    # Debug by solving only the first problem
    debug: bool = False

    # Push solutions to the Hub
    push_to_hub: bool = False


class PythonREPL:
    def __init__(self, timeout=5):
        self.timeout = timeout

    def execute(self, query: str) -> Tuple[bool, str]:
        query = "import math\nimport numpy as np\nimport sympy as sp\n" + query
        query = query.strip().split("\n")
        if "print(" not in query[-1]:
            if "#" in query[-1]:
                query[-1] = query[-1].split("#")[0]
            query[-1] = "print(" + query[-1] + ")"
        query = "\n".join(query)

        with tempfile.TemporaryDirectory() as temp_dir:
            temp_file_path = os.path.join(temp_dir, "tmp.py")

            with open(temp_file_path, "w") as f:
                f.write(query)

            result = subprocess.run(
                ["python3", temp_file_path],
                capture_output=True,
                check=False,
                text=True,
                timeout=self.timeout,
            )

            if result.returncode == 0:
                output = result.stdout
                return True, output.strip()
            else:
                error_msg = result.stderr.strip()
                msgs = error_msg.split("\n")
                new_msgs = []
                want_next = False
                for m in msgs:
                    if "Traceback" in m:
                        new_msgs.append(m)
                    elif m == msgs[-1]:
                        new_msgs.append(m)
                    elif temp_file_path in m:
                        st = m.index('"/') + 1 if '"/' in m else 0
                        ed = m.index(temp_file_path) + 1 if temp_file_path in m else None
                        clr = m[st:ed] if not ed else m[st:]
                        m = m.replace(clr, "")
                        new_msgs.append(m)
                        want_next = True
                    elif want_next:
                        new_msgs.append(m)
                        want_next = False
                error_msg = "\n".join(new_msgs)
                return False, error_msg.strip()

    def __call__(self, query: str) -> Tuple[bool, str]:
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.execute, query)
            try:
                return future.result(timeout=self.timeout)
            except TimeoutError:
                return False, f"Timed out after {self.timeout} seconds."


def execute_completion(
    executor: PythonREPL,
    completion: str,
    return_status: bool = False,
    last_code_block: bool = False,
) -> str | Tuple[str, bool]:
    # executions = ["!" + code for code in re.findall(r"```bash(.*?)```", completion, re.DOTALL) if "!" not in code]
    executions = re.findall(r"```python(.*?)```", completion, re.DOTALL)

    if len(executions) == 0:  # directly return cot result
        return completion, False if return_status else completion
    else:
        if last_code_block:
            executions = [executions[-1]]

        # Python
        execution_outputs = []
        successes = []
        for code in executions:
            success = False

            if "subprocess" in code:
                output = "subprocess is not allowed"
                execution_outputs.append(output)
                successes.append(success)
                continue

            if "venv" in code:
                output = "venv is not allowed"
                execution_outputs.append(output)
                successes.append(success)
                continue

            try:
                success, output = executor(code)
            except TimeoutError as e:
                print("time out")
                output = e

            if not success and not return_status:
                output = ""

            execution_outputs.append(output)
            successes.append(success)

        output = str(execution_outputs[-1]).strip()
        success = successes[-1]

        if return_status:
            return output, success
        else:
            return output


def postprocess_completion(
    text: str, return_status: bool = False, last_code_block=False, timeout=5
) -> str | Tuple[str, bool]:
    executor = PythonREPL(timeout=timeout)

    result = execute_completion(executor, text, return_status=return_status, last_code_block=last_code_block)
    del executor

    return result


def apply_template(example: Dict[str, Any], prompt: str) -> Dict[str, Any]:
    return prompt.format(example["prompt"], "{}")


def last_boxed_only_string(string):
    """
    Extracts the last LaTeX boxed or framed expression from a string.
    Args:
        string (str): The input string containing LaTeX expressions.
    Returns:
        str or None: The last boxed or framed expression, if found;
        otherwise, None.
    """

    idx = string.rfind("\\boxed")
    if idx < 0:
        idx = string.rfind("\\fbox")
        if idx < 0:
            return None

    i = idx
    right_brace_idx = None
    num_left_braces_open = 0
    while i < len(string):
        if string[i] == "{":
            num_left_braces_open += 1
        if string[i] == "}":
            num_left_braces_open -= 1
            if num_left_braces_open == 0:
                right_brace_idx = i
                break
        i += 1

    if right_brace_idx is None:
        retval = None
    else:
        retval = string[idx : right_brace_idx + 1]

    return retval


def remove_boxed(s):
    """
    Removes the LaTeX boxed command, returning the content inside the braces.
    Args:
        s (str): The string containing a LaTeX boxed expression.
    Returns:
        str or None: The content inside the boxed command, if valid;
        otherwise, None.
    """

    left = "\\boxed{"
    try:
        assert s[: len(left)] == left
        assert s[-1] == "}"
        length = len(left)
        return s[length:-1]
    except Exception:
        return None


def extract_boxed_answer(pred_str, strip_double_curly_brace=False):
    """
    Extracts the answer from a LaTeX boxed expression within
    a prediction string.
    Args:
        pred_str (str): The string containing one or more LaTeX
        boxed expressions.
        strip_double_curly_brace (bool): If True, removes an additional
        layer of braces.
    Returns:
        str or None: The extracted answer, if any; otherwise, None.
    """

    boxed_str = last_boxed_only_string(pred_str)
    if boxed_str is None:
        return None
    answer = remove_boxed(boxed_str)
    if answer is None:
        return None
    if strip_double_curly_brace:
        match = re.match("^\{(.*)\}$", answer)  # noqa: W605
        if match:
            answer = match.group(1)
    return answer


def normalize_final_answer(final_answer: str) -> str:
    """
    Normalizes a final answer string by removing or replacing various LaTeX
    and text elements.
    Args:
        final_answer (str): The answer string to normalize.
    Returns:
        str: The normalized answer string.
    """

    match = re.search(r"(.*?)Problem:", final_answer, flags=re.S)
    if match:
        final_answer = match.group(1)  # 返回匹配的第一部分,即"Problem"之前的所有文本
    """Normalize a final answer to a quantitative reasoning question."""
    # final_answer = final_answer.split('=')[-1]
    SUBSTITUTIONS = [
        ("an ", ""),
        ("a ", ""),
        (".$", "$"),
        ("\\$", ""),
        (r"\ ", ""),
        (" ", ""),
        ("mbox", "text"),
        (",\\text{and}", ","),
        ("\\text{and}", ","),
        ("\\text{m}", "\\text{}"),
        ("\\le", "<"),
    ]
    REMOVED_EXPRESSIONS = [
        "square",
        "ways",
        "integers",
        "dollars",
        "mph",
        "inches",
        "ft",
        "hours",
        "km",
        "units",
        "\\ldots",
        "sue",
        "points",
        "feet",
        "minutes",
        "digits",
        "cents",
        "degrees",
        "cm",
        "gm",
        "pounds",
        "meters",
        "meals",
        "edges",
        "students",
        "childrentickets",
        "multiples",
        "\\text{s}",
        "\\text{.}",
        "\\text{\ns}",
        "\\text{}^2",
        "\\text{}^3",
        "\\text{\n}",
        "\\text{}",
        r"\mathrm{th}",
        r"^\circ",
        r"^{\circ}",
        r"\;",
        r",\!",
        "{,}",
        '"',
        "\\dots",
        "\n",
        "\r",
        "\f",
        "\%",
    ]
    for before, after in SUBSTITUTIONS:
        final_answer = final_answer.replace(before, after)
    for expr in REMOVED_EXPRESSIONS:
        final_answer = final_answer.replace(expr, "")

    # Extract answer that is in LaTeX math, is bold,
    # is surrounded by a box, etc.
    final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
    assert "\n" not in final_answer
    assert "\r" not in final_answer
    assert "\f" not in final_answer
    if len(re.findall(r"finalansweris(.*)", final_answer)) > 0:
        final_answer = re.findall(r"finalansweris(.*)", final_answer)[-1]

    if len(re.findall(r"answer?is:?(.*)", final_answer)) > 0:
        final_answer = re.findall(r"answer?is:?(.*)", final_answer)[-1]

    if len(re.findall(r"oxed\{(.*?)\}", final_answer)) > 0:
        final_answer = re.findall(r"oxed\{(.*?)\}", final_answer)[-1]

    if len(re.findall(r"\$(.*?)\$", final_answer)) > 0:
        final_answer = re.findall(r"\$(.*?)\$", final_answer)[-1]
    final_answer = final_answer.strip()
    if "rac" in final_answer and "\\frac" not in final_answer:
        final_answer = final_answer.replace("rac", "\\frac")

    final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
    final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
    final_answer = final_answer.replace("$", "")

    if final_answer.replace(",", "").isdigit():
        final_answer = final_answer.replace(",", "")

    return final_answer


def naive_parse(answer: str) -> str:
    """
    Extracts and returns the numeric digits from the input string, processing them in reverse order
    until a non-numeric character is encountered after encountering the first numeric character.

    Args:
        answer (str): The input string to parse.

    Returns:
        str: A string consisting of the numeric digits extracted from the input, in their original order.

    Example:
        >>> naive_parse("abc123def")
        '123'
        >>> naive_parse("def456ghi")
        '456'
        >>> naive_parse("no numbers here")
        ''
    """
    out = []
    start = False
    end = False
    for l in reversed(list(answer)):
        if l in "0123456789" and not end:
            start = True
            out.append(l)
        else:
            if start:
                end = True

    out = reversed(out)
    return "".join(out)


def validate_answer_is_numeric(x: str | int | float) -> int:
    FLOAT_TOLERANCE = 0.2
    try:
        x = round(float(x))
        f = float(x)
        if abs(x - f) > FLOAT_TOLERANCE:
            x = -1
    except Exception:
        x = -1
    return x


def filter_answers(answers: List[str]) -> List[int]:
    formatted_answers = [validate_answer_is_numeric(a) for a in answers]

    # Filter for non-negative answers
    formatted_answers = [a for a in formatted_answers if a >= 0]
    # Compute modulo
    formatted_answers = [a % 1_000 for a in formatted_answers]
    # less than 2.1 billion or cannot convert to C int (32-bit)
    formatted_answers = [a for a in formatted_answers if a <= 999]
    return formatted_answers


def check_sympy_equivalence(ref_answer: str, model_answer: str) -> bool:
    def do_answers_match(ref_answer: str, model_answer: str) -> bool:
        ref_sympy = parse_latex(ref_answer)
        model_sympy = parse_latex(model_answer)
        diff = simplify(ref_sympy - model_sympy)
        return True if -1e-12 < N(diff) < 1e-12 or diff.is_zero else False

    try:
        result = do_answers_match(ref_answer, model_answer)
        return result
    except Exception as e:
        print(e)
        return False


def check_string_match(ref_answer: str, model_answer: str) -> bool:
    try:
        return ref_answer == model_answer
    except Exception as e:
        print(e)
    return False


def check_answer(ref_answer: str, model_answer: str) -> bool:
    # check if strings are the same
    correct = check_string_match(ref_answer, model_answer)
    if correct:
        return True

    # use the sympy library to check if the expressions are the same
    correct = check_sympy_equivalence(ref_answer, model_answer)
    if correct:
        return True

    return False


debug = False
model_id = "Numina-Math-7B"
revision = "main"
system_prompt = "{}"
validation_set = "kaggle-validation-set-medium"
is_submission = True
num_samples = 4
num_generations = 4
temperature = 0.8
is_quantized = False
restart_on_fail = False
top_p = 1.0
top_k = 0
max_new_tokens = 2048
# Papermill related variables
push_to_hub = False
notebook_name = ""

config = Config(
    debug=debug,
    push_to_hub=push_to_hub,
    model_id=model_id,
    revision=revision,
    system_prompt=system_prompt,
    validation_set=validation_set,
    is_quantized=is_quantized,
    restart_on_fail=restart_on_fail,
    is_submission=is_submission,
    num_samples=num_samples,
    num_generations=num_generations,
    do_sample=True,
    temperature=temperature,
    top_p=top_p,
    top_k=top_k,
    max_new_tokens=max_new_tokens,
)
print(f"=== Running submission with config ===\n\n{config}")


def generate(message, temperature):
    """
    Generates a chat completion response by streaming data from the client chat model.

    This function streams the response from the client chat model and yields the content
    of the response chunk by chunk. If an error occurs, it yields the error message.

    Parameters:
    message (str): The input message to be sent to the chat model.
    temperature (float): The sampling temperature to use. Higher values mean the model will take more risks.

    Yields:
    tuple: A tuple containing the content of the response and a boolean flag indicating if an error occurred.
           If no error occurred, the boolean flag will be False and the content will be the response text.
           If an error occurred, the boolean flag will be True and the content will be the error message.
    """
    stream = client.chat.completions.create(
        model="tgi",
        messages=message,
        stream=True,
        max_tokens=1024,
        stop=["```output\n"],
        temperature=temperature,
        timeout=30,
    )

    response = stream.response

    # The reason why the library method is not used here is that if an error occurs,
    #    the returned data will not be a stream, and using the official library will result in an error.
    for chunk in response.iter_bytes():
        chunk = chunk.decode("utf-8")
        chune_json = json.loads(chunk.replace("data:", ""))
        try:
            if "error" in chune_json and chune_json["error"]:
                yield chune_json["error"], True
                break

            content = chune_json["choices"][0]["delta"]["content"]
            if content is not None:
                yield content, False
        except Exception as e:
            print(f"func: generate error occurred\njson:{chune_json}\nerror:{e}")
            yield "", True


def get_majority_text(data):
    from collections import Counter

    # Count the frequency of each answer in model_answers
    answer_counts = Counter(data["model_answers"])

    # Find the majority response
    majority_response = answer_counts.most_common(1)[0][0]

    # Find the index of the first occurrence of the majority response
    majority_index = data["model_answers"].index(majority_response)

    # Return the corresponding text in gen_texts
    return data["gen_texts"][majority_index]


def extract_solution(text):
    # Split the text at "### Solution:"
    parts = text.split("### Solution:", 1)
    if len(parts) > 1:
        # Return everything after "### Solution:"
        return parts[1].strip()
    else:
        # Return an empty string if "### Solution:" is not found
        return ""


def process_code(
    example: Dict[str, Any],
    config: Config,
    restart_on_fail: bool = False,
    last_step: bool = False,
) -> Dict[str, Any]:
    gen_text = example["gen_texts"]
    num_python_blocks = len(re.findall(r"```python(.*?)```", gen_text, re.DOTALL))

    if num_python_blocks == 0:
        if restart_on_fail:
            print("no code has ever been generated, RESTARTING")
            # reset the text to the original
            example["gen_texts"] = example["text"]
        else:
            print("no code has ever been generated, STOP")
            example["should_prune"] = True
            example["has_code"] = False
        return example

    if gen_text[-10:] != "```output\n" and ("answer is" in gen_text[-100:] or "\\boxed" in gen_text[-100:]):
        num_output_blocks = len(re.findall(r"```output(.*?)```", gen_text, re.DOTALL))
        if num_output_blocks == 0:
            print("the model hallucinated the code answer")
            example["should_prune"] = True
            return example

        if "boxed" in gen_text[-100:]:
            try:
                answer = normalize_final_answer(extract_boxed_answer(gen_text[-100:]))
            except Exception:
                answer = "-1"
        else:
            answer = normalize_final_answer(gen_text[-100:])

        example["model_answers"] = answer
        if not config.is_submission:
            example["corrects"] = check_answer(example["ground_truth"], answer)
        example["should_prune"] = True
        print("Answer is: ", answer, example["ground_truth"], example["corrects"])
        return example

    if last_step:
        # no point in continuing if we are at the last step
        return example

    if gen_text[-10:] != "```output\n":
        # something else has gone wrong with the generation
        print("warning: output block not found: ", gen_text[-40:])
        if restart_on_fail:
            example["gen_texts"] = example["text"]
        else:
            example["should_prune"] = True
        return example

    code_result, status = postprocess_completion(gen_text, return_status=True, last_code_block=True)
    # add the code result for the next round of generation
    TRUNCATION_LIMIT = 200
    if len(code_result) > TRUNCATION_LIMIT:
        code_result = code_result[:TRUNCATION_LIMIT] + " ... (output truncated)"
    example["gen_texts"] = gen_text + f"{code_result}\n```"

    return example


def solve_problem(problem, temperature, progress=gr.Progress()):
    problem = apply_template({"prompt": problem}, prompt=config.system_prompt)
    print(f"Problem: {problem}")

    sample = {
        "problem": problem,  # not used for the submission TODO Remove
        "ground_truth": "unknown",  # not used for the submission TODO Remove
        "text": "## Solution:\n",
        "gen_texts": "## Solution:\n",  # used to store all the generated text
        "should_prune": False,
        "problem_index": -1,  # not used for the submission TODO Remove
        "model_answers": "-1",
        "has_code": True,
        "corrects": False,  # not used for the submission TODO Remove
    }

    for step in progress.tqdm(
        range(config.num_generations), desc="Generating candidates"
    ):  # Depth of the tree (e.g. 6 steps = 5 code blocks)

        step_reponse = sample["gen_texts"]

        messages = [
            {"role": "user", "content": sample["problem"]},
            {"role": "assistant", "content": sample["gen_texts"]},
        ]

        for reponse_message, error in generate(messages, temperature):
            if reponse_message is not None:
                step_reponse += reponse_message
                yield step_reponse

                if error:
                    return

        sample["gen_texts"] = step_reponse

        # TODO: Maybe it should just return the result of running the code
        sample = process_code(
            sample,
            config=config,
            restart_on_fail=config.restart_on_fail,
            last_step=(step == (config.num_generations - 1)),
        )
        sample["gen_texts"] = sample["gen_texts"] + "\n"

        run_code_reponse = sample["gen_texts"].replace(step_reponse, "")

        for output_mseeage in run_code_reponse:
            if output_mseeage is not None:
                step_reponse += output_mseeage
                yield step_reponse

        if sample["should_prune"]:
            break

    yield sample["gen_texts"]


example_data = datasets.load_dataset(
    "AI-MO/kaggle-validation-set-medium-extended",
    split="train",
    use_auth_token=os.environ.get("HF_DATASET_TOKEN", None),
)


with open("app.css", "r") as f:
    css = f.read()

latex_delimiters = [
    {"left": "[", "right": "]", "display": True},
]


def get_random_problem():
    example = random.choice(list(example_data))
    problem = example["problem"]
    return problem


def update_example_problem():
    problem_example_text = get_random_problem()
    problem_example_text_display = (
        problem_example_text[:100] + "..." if len(problem_example_text) > 100 else problem_example_text
    )
    return problem_example_text_display, problem_example_text


def clear():
    problem_example_text, problem_example_text_display = update_example_problem()
    return "", 0.1, "", problem_example_text_display, problem_example_text


with gr.Blocks(css=css, title="Math Olympiad Solver") as demo:
    problem_example_text, problem_example_text_display = update_example_problem()

    with gr.Row(elem_classes="title"):
        gr.HTML("Math Olympiad Solver", elem_classes="title-content")

    with gr.Row(elem_classes="sub-title"):
        gr.HTML("Here may need to add some description string", elem_classes="sub-title-content")

    with gr.Row(elem_classes="main-area"):
        with gr.Column(scale=1, elem_classes="left"):
            with gr.Row(elem_classes="probelm-example-container"):
                with gr.Blocks(elem_classes="probelm-example-title"):
                    gr.HTML("Problem example", elem_classes="probelm-example-title-content")

                with gr.Blocks(elem_classes="action-container"):
                    gr.Button("", elem_classes="probelm-example-another", icon="./static/images/reset.png")
                    copy_btn = gr.Button("Copy", elem_classes="probelm-example-copy")

                with gr.Row(elem_classes="copy-icon-container"):
                    problem_example = gr.Markdown(
                        problem_example_text_display,
                        latex_delimiters=latex_delimiters,
                        elem_classes="probelm-example-content",
                    )

            inp = gr.Textbox(placeholder="Problem", label="Problem input", lines=5)

            with gr.Accordion("Advanced Options", open=False):
                temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Temperature")

            with gr.Row():
                btn_run = gr.Button("Run")
                btn_clear = gr.Button("Clear")

        with gr.Column(scale=1, elem_classes="right"):
            gr.HTML("Solution", elem_classes="solution-title-content")
            out = gr.Markdown(elem_classes="solution-content", latex_delimiters=latex_delimiters)

        problem_example_text_hidden = gr.Markdown(value=problem_example_text, visible=False)
        btn_run.click(fn=solve_problem, inputs=[inp, temperature], outputs=out)

        copy_btn.click(fn=lambda example: example, inputs=[problem_example_text_hidden], outputs=[inp])

        btn_clear.click(
            fn=clear,
            inputs=[],
            outputs=[
                inp,
                temperature,
                out,
                problem_example,
                problem_example_text_hidden,
            ],
        )

        demo.load(
            update_example_problem,
            inputs=None,
            outputs=[
                problem_example,
                problem_example_text_hidden,
            ],
        )

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=5).launch()