Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from groq import Groq | |
| import os | |
| import threading | |
| import base64 | |
| from io import BytesIO | |
| from mistralai import Mistral # Pixtral-12B integration | |
| # Initialize Groq client | |
| client = Groq(api_key=os.environ["GROQ_API_KEY"]) | |
| # Initialize Mistral AI client (Pixtral-12B-2409 for VQA) | |
| mistral_client = Mistral(api_key=os.environ["MISTRAL_API_KEY"]) | |
| pixtral_model = "pixtral-12b-2409" | |
| # Load Text-to-Image Models | |
| model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA") | |
| model2 = gr.load("models/Purz/face-projection") | |
| # Stop event for threading (image generation) | |
| stop_event = threading.Event() | |
| # Convert PIL image to Base64 | |
| def pil_to_base64(pil_image, image_format='jpeg'): | |
| buffered = BytesIO() | |
| pil_image.save(buffered, format=image_format) | |
| base64_string = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
| return base64_string, image_format | |
| # Function to generate tutor output (lesson, question, feedback) | |
| def generate_tutor_output(subject, difficulty, student_input): | |
| prompt = f""" | |
| You are an expert tutor in {subject} at the {difficulty} level. | |
| The student has provided the following input: "{student_input}" | |
| Please generate: | |
| 1. A brief, engaging lesson on the topic (2-3 paragraphs) | |
| 2. A thought-provoking question to check understanding | |
| 3. Constructive feedback on the student's input | |
| Format your response as a JSON object with keys: "lesson", "question", "feedback" | |
| """ | |
| completion = client.chat.completions.create( | |
| messages=[{ | |
| "role": "system", | |
| "content": f"You are the world's best AI tutor, renowned for explaining complex concepts with clarity and examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." | |
| }, { | |
| "role": "user", | |
| "content": prompt, | |
| }], | |
| model="mixtral-8x7b-32768", | |
| max_tokens=1000, | |
| ) | |
| return completion.choices[0].message.content | |
| # Function to generate images based on model selection | |
| def generate_images(text, selected_model): | |
| stop_event.clear() | |
| model = model1 if selected_model == "Model 1 (Turbo Realism)" else model2 if selected_model == "Model 2 (Face Projection)" else None | |
| if not model: | |
| return ["Invalid model selection."] * 3 | |
| results = [] | |
| for i in range(3): | |
| if stop_event.is_set(): | |
| return ["Image generation stopped by user."] * 3 | |
| modified_text = f"{text} variation {i+1}" | |
| result = model(modified_text) | |
| results.append(result) | |
| return results | |
| # Function for Visual Question Answering (Pixtral-12B) | |
| def answer_question(text, image, temperature=0.0, max_tokens=1024): | |
| base64_string, file_format = pil_to_base64(image) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": text}, | |
| {"type": "image_url", "image_url": f"data:image/{file_format};base64,{base64_string}"} | |
| ] | |
| } | |
| ] | |
| chat_response = mistral_client.chat.complete( | |
| model=pixtral_model, | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=max_tokens | |
| ) | |
| return chat_response.choices[0].message.content | |
| # Clear all fields | |
| def clear_all(): | |
| return "", None, "" | |
| # Set up the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🎓 AI Tutor & Visual Learning Assistant") | |
| # Section 1: Text-based Learning | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| subject = gr.Dropdown(["Math", "Science", "History", "Literature", "Code", "AI"], label="Subject") | |
| difficulty = gr.Radio(["Beginner", "Intermediate", "Advanced"], label="Difficulty Level") | |
| student_input = gr.Textbox(placeholder="Type your query here...", label="Your Input") | |
| submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") | |
| with gr.Column(scale=3): | |
| lesson_output = gr.Markdown(label="Lesson") | |
| question_output = gr.Markdown(label="Comprehension Question") | |
| feedback_output = gr.Markdown(label="Feedback") | |
| # Section 2: Image Generation | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| model_selector = gr.Radio( | |
| ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], | |
| label="Select Image Generation Model", | |
| value="Model 1 (Turbo Realism)" | |
| ) | |
| submit_button_visual = gr.Button("Generate Visuals", variant="primary") | |
| with gr.Column(scale=3): | |
| output1 = gr.Image(label="Generated Image 1") | |
| output2 = gr.Image(label="Generated Image 2") | |
| output3 = gr.Image(label="Generated Image 3") | |
| # Section 3: Visual Question Answering (Pixtral-12B) | |
| gr.Markdown("## 🖼️ Visual Question Answering (Pixtral-12B)") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| question = gr.Textbox(placeholder="Ask about the image...", lines=2) | |
| image = gr.Image(type="pil") | |
| with gr.Row(): | |
| temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
| max_tokens = gr.Slider(label="Max Tokens", minimum=128, maximum=2048, value=1024, step=128) | |
| with gr.Column(scale=3): | |
| output_text = gr.Textbox(lines=10, label="Pixtral 12B Response") | |
| with gr.Row(): | |
| clear_btn = gr.Button("Clear", variant="secondary") | |
| submit_btn_vqa = gr.Button("Submit", variant="primary") | |
| # Generate Text-based Output | |
| submit_button_text.click( | |
| fn=lambda subject, difficulty, student_input: eval(generate_tutor_output(subject, difficulty, student_input)), | |
| inputs=[subject, difficulty, student_input], | |
| outputs=[lesson_output, question_output, feedback_output] | |
| ) | |
| # Generate Visual Output | |
| submit_button_visual.click( | |
| fn=generate_images, | |
| inputs=[student_input, model_selector], | |
| outputs=[output1, output2, output3] | |
| ) | |
| # VQA Processing | |
| submit_btn_vqa.click( | |
| fn=answer_question, | |
| inputs=[question, image, temperature, max_tokens], | |
| outputs=[output_text] | |
| ) | |
| # Clear VQA Inputs | |
| clear_btn.click( | |
| fn=clear_all, | |
| inputs=[], | |
| outputs=[question, image, output_text] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |