Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
4 |
-
import threading
|
|
|
|
|
|
|
5 |
|
6 |
-
# Initialize Groq client
|
7 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Load Text-to-Image Models
|
10 |
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
|
11 |
model2 = gr.load("models/Purz/face-projection")
|
@@ -13,6 +20,15 @@ model2 = gr.load("models/Purz/face-projection")
|
|
13 |
# Stop event for threading (image generation)
|
14 |
stop_event = threading.Event()
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Function to generate tutor output (lesson, question, feedback)
|
17 |
def generate_tutor_output(subject, difficulty, student_input):
|
18 |
prompt = f"""
|
@@ -30,26 +46,24 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
30 |
completion = client.chat.completions.create(
|
31 |
messages=[{
|
32 |
"role": "system",
|
33 |
-
"content": f"You are the world's best AI tutor, renowned for
|
34 |
}, {
|
35 |
"role": "user",
|
36 |
"content": prompt,
|
37 |
}],
|
38 |
-
model="mixtral-8x7b-32768",
|
39 |
max_tokens=1000,
|
40 |
)
|
41 |
|
42 |
return completion.choices[0].message.content
|
43 |
|
|
|
44 |
# Function to generate images based on model selection
|
45 |
def generate_images(text, selected_model):
|
46 |
stop_event.clear()
|
47 |
|
48 |
-
if selected_model == "Model 1 (Turbo Realism)"
|
49 |
-
|
50 |
-
elif selected_model == "Model 2 (Face Projection)":
|
51 |
-
model = model2
|
52 |
-
else:
|
53 |
return ["Invalid model selection."] * 3
|
54 |
|
55 |
results = []
|
@@ -63,28 +77,46 @@ def generate_images(text, selected_model):
|
|
63 |
|
64 |
return results
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Set up the Gradio interface
|
67 |
with gr.Blocks() as demo:
|
68 |
-
gr.Markdown("# 🎓
|
69 |
|
70 |
-
# Section
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=2):
|
73 |
-
subject = gr.Dropdown(
|
74 |
-
|
75 |
-
|
76 |
-
info="Choose the subject of your lesson"
|
77 |
-
)
|
78 |
-
difficulty = gr.Radio(
|
79 |
-
["Beginner", "Intermediate", "Advanced"],
|
80 |
-
label="Difficulty Level",
|
81 |
-
info="Select your proficiency level"
|
82 |
-
)
|
83 |
-
student_input = gr.Textbox(
|
84 |
-
placeholder="Type your query here...",
|
85 |
-
label="Your Input",
|
86 |
-
info="Enter the topic you want to learn"
|
87 |
-
)
|
88 |
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
|
89 |
|
90 |
with gr.Column(scale=3):
|
@@ -92,7 +124,7 @@ with gr.Blocks() as demo:
|
|
92 |
question_output = gr.Markdown(label="Comprehension Question")
|
93 |
feedback_output = gr.Markdown(label="Feedback")
|
94 |
|
95 |
-
# Section
|
96 |
with gr.Row():
|
97 |
with gr.Column(scale=2):
|
98 |
model_selector = gr.Radio(
|
@@ -107,39 +139,50 @@ with gr.Blocks() as demo:
|
|
107 |
output2 = gr.Image(label="Generated Image 2")
|
108 |
output3 = gr.Image(label="Generated Image 3")
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
except:
|
123 |
-
return "Error parsing output", "No question available", "No feedback available"
|
124 |
-
|
125 |
-
def process_output_visual(text, selected_model):
|
126 |
-
try:
|
127 |
-
images = generate_images(text, selected_model)
|
128 |
-
return images[0], images[1], images[2]
|
129 |
-
except:
|
130 |
-
return None, None, None
|
131 |
|
|
|
|
|
|
|
|
|
|
|
132 |
submit_button_text.click(
|
133 |
-
fn=
|
134 |
inputs=[subject, difficulty, student_input],
|
135 |
outputs=[lesson_output, question_output, feedback_output]
|
136 |
)
|
137 |
|
|
|
138 |
submit_button_visual.click(
|
139 |
-
fn=
|
140 |
inputs=[student_input, model_selector],
|
141 |
outputs=[output1, output2, output3]
|
142 |
)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
if __name__ == "__main__":
|
145 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
4 |
+
import threading
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from mistralai import Mistral # Pixtral-12B integration
|
8 |
|
9 |
+
# Initialize Groq client
|
10 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
11 |
|
12 |
+
# Initialize Mistral AI client (Pixtral-12B-2409 for VQA)
|
13 |
+
mistral_client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])
|
14 |
+
pixtral_model = "pixtral-12b-2409"
|
15 |
+
|
16 |
# Load Text-to-Image Models
|
17 |
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
|
18 |
model2 = gr.load("models/Purz/face-projection")
|
|
|
20 |
# Stop event for threading (image generation)
|
21 |
stop_event = threading.Event()
|
22 |
|
23 |
+
|
24 |
+
# Convert PIL image to Base64
|
25 |
+
def pil_to_base64(pil_image, image_format='jpeg'):
|
26 |
+
buffered = BytesIO()
|
27 |
+
pil_image.save(buffered, format=image_format)
|
28 |
+
base64_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
29 |
+
return base64_string, image_format
|
30 |
+
|
31 |
+
|
32 |
# Function to generate tutor output (lesson, question, feedback)
|
33 |
def generate_tutor_output(subject, difficulty, student_input):
|
34 |
prompt = f"""
|
|
|
46 |
completion = client.chat.completions.create(
|
47 |
messages=[{
|
48 |
"role": "system",
|
49 |
+
"content": f"You are the world's best AI tutor, renowned for explaining complex concepts with clarity and examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
|
50 |
}, {
|
51 |
"role": "user",
|
52 |
"content": prompt,
|
53 |
}],
|
54 |
+
model="mixtral-8x7b-32768",
|
55 |
max_tokens=1000,
|
56 |
)
|
57 |
|
58 |
return completion.choices[0].message.content
|
59 |
|
60 |
+
|
61 |
# Function to generate images based on model selection
|
62 |
def generate_images(text, selected_model):
|
63 |
stop_event.clear()
|
64 |
|
65 |
+
model = model1 if selected_model == "Model 1 (Turbo Realism)" else model2 if selected_model == "Model 2 (Face Projection)" else None
|
66 |
+
if not model:
|
|
|
|
|
|
|
67 |
return ["Invalid model selection."] * 3
|
68 |
|
69 |
results = []
|
|
|
77 |
|
78 |
return results
|
79 |
|
80 |
+
|
81 |
+
# Function for Visual Question Answering (Pixtral-12B)
|
82 |
+
def answer_question(text, image, temperature=0.0, max_tokens=1024):
|
83 |
+
base64_string, file_format = pil_to_base64(image)
|
84 |
+
|
85 |
+
messages = [
|
86 |
+
{
|
87 |
+
"role": "user",
|
88 |
+
"content": [
|
89 |
+
{"type": "text", "text": text},
|
90 |
+
{"type": "image_url", "image_url": f"data:image/{file_format};base64,{base64_string}"}
|
91 |
+
]
|
92 |
+
}
|
93 |
+
]
|
94 |
+
|
95 |
+
chat_response = mistral_client.chat.complete(
|
96 |
+
model=pixtral_model,
|
97 |
+
messages=messages,
|
98 |
+
temperature=temperature,
|
99 |
+
max_tokens=max_tokens
|
100 |
+
)
|
101 |
+
|
102 |
+
return chat_response.choices[0].message.content
|
103 |
+
|
104 |
+
|
105 |
+
# Clear all fields
|
106 |
+
def clear_all():
|
107 |
+
return "", None, ""
|
108 |
+
|
109 |
+
|
110 |
# Set up the Gradio interface
|
111 |
with gr.Blocks() as demo:
|
112 |
+
gr.Markdown("# 🎓 AI Tutor & Visual Learning Assistant")
|
113 |
|
114 |
+
# Section 1: Text-based Learning
|
115 |
with gr.Row():
|
116 |
with gr.Column(scale=2):
|
117 |
+
subject = gr.Dropdown(["Math", "Science", "History", "Literature", "Code", "AI"], label="Subject")
|
118 |
+
difficulty = gr.Radio(["Beginner", "Intermediate", "Advanced"], label="Difficulty Level")
|
119 |
+
student_input = gr.Textbox(placeholder="Type your query here...", label="Your Input")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
|
121 |
|
122 |
with gr.Column(scale=3):
|
|
|
124 |
question_output = gr.Markdown(label="Comprehension Question")
|
125 |
feedback_output = gr.Markdown(label="Feedback")
|
126 |
|
127 |
+
# Section 2: Image Generation
|
128 |
with gr.Row():
|
129 |
with gr.Column(scale=2):
|
130 |
model_selector = gr.Radio(
|
|
|
139 |
output2 = gr.Image(label="Generated Image 2")
|
140 |
output3 = gr.Image(label="Generated Image 3")
|
141 |
|
142 |
+
# Section 3: Visual Question Answering (Pixtral-12B)
|
143 |
+
gr.Markdown("## 🖼️ Visual Question Answering (Pixtral-12B)")
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column(scale=2):
|
146 |
+
question = gr.Textbox(placeholder="Ask about the image...", lines=2)
|
147 |
+
image = gr.Image(type="pil")
|
148 |
+
with gr.Row():
|
149 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
|
150 |
+
max_tokens = gr.Slider(label="Max Tokens", minimum=128, maximum=2048, value=1024, step=128)
|
151 |
+
|
152 |
+
with gr.Column(scale=3):
|
153 |
+
output_text = gr.Textbox(lines=10, label="Pixtral 12B Response")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
with gr.Row():
|
156 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
157 |
+
submit_btn_vqa = gr.Button("Submit", variant="primary")
|
158 |
+
|
159 |
+
# Generate Text-based Output
|
160 |
submit_button_text.click(
|
161 |
+
fn=lambda subject, difficulty, student_input: eval(generate_tutor_output(subject, difficulty, student_input)),
|
162 |
inputs=[subject, difficulty, student_input],
|
163 |
outputs=[lesson_output, question_output, feedback_output]
|
164 |
)
|
165 |
|
166 |
+
# Generate Visual Output
|
167 |
submit_button_visual.click(
|
168 |
+
fn=generate_images,
|
169 |
inputs=[student_input, model_selector],
|
170 |
outputs=[output1, output2, output3]
|
171 |
)
|
172 |
|
173 |
+
# VQA Processing
|
174 |
+
submit_btn_vqa.click(
|
175 |
+
fn=answer_question,
|
176 |
+
inputs=[question, image, temperature, max_tokens],
|
177 |
+
outputs=[output_text]
|
178 |
+
)
|
179 |
+
|
180 |
+
# Clear VQA Inputs
|
181 |
+
clear_btn.click(
|
182 |
+
fn=clear_all,
|
183 |
+
inputs=[],
|
184 |
+
outputs=[question, image, output_text]
|
185 |
+
)
|
186 |
+
|
187 |
if __name__ == "__main__":
|
188 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|