Spaces:
Running
Running
File size: 3,680 Bytes
d1bffba d1d4db7 d1bffba c2e6eeb d1bffba c2e6eeb d1bffba c2e6eeb d1d4db7 c2e6eeb d367c2f d1bffba 2677815 c2e6eeb d1d4db7 c2e6eeb d367c2f d1bffba 458bcca 1f10ad6 d1d4db7 d1bffba d1d4db7 c2e6eeb 458bcca c2e6eeb d1bffba d367c2f 8e2ffcb d367c2f d1bffba 18e03d9 4a60e71 d1bffba 9519ee9 45d981b d1bffba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import torch
import cv2
from matplotlib import pyplot as plt
from segmentation_mask_overlay import overlay_masks
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
classes = list()
def create_rgb_mask(mask):
color = tuple(np.random.choice(range(0,256), size=3))
gray_3_channel = cv2.merge((mask, mask, mask))
gray_3_channel[mask==255] = color
return gray_3_channel.astype(np.uint8)
def detect_using_clip(image,prompts=[],threshould=0.4):
predicted_masks = list()
inputs = processor(
text=prompts,
images=[image] * len(prompts),
padding="max_length",
return_tensors="pt",
)
with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation
outputs = model(**inputs)
preds = outputs.logits.unsqueeze(1)
for i,prompt in enumerate(prompts):
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
predicted_image = np.where(predicted_image>threshould,255,0)
predicted_masks.append(predicted_image)
bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
return bool_masks
def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
alpha = 0.7
image_resize = cv2.resize(image,(352,352))
resize_image_copy = image_resize.copy()
# for mask_image in predicted_images:
# resize_image_copy = cv2.addWeighted(resize_image_copy,alpha,mask_image,1-alpha,10)
return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
def shot(alpha,beta,image,labels_text):
if "," in labels_text:
prompts = labels_text.split(',')
else:
prompts = [labels_text]
prompts = list(map(lambda x: x.strip(),prompts))
mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]
resize_image = cv2.resize(image,(352,352))
predicted_images = detect_using_clip(image,prompts=prompts)
category_image = overlay_masks(resize_image,np.stack(predicted_images,-1),labels=mask_labels,colors=cmap,alpha=alpha,beta=beta)
return category_image
iface = gr.Interface(fn=shot,
inputs = [
gr.Slider(0.1, 1, value=0.4, step=0.1 , label="alpha", info="Choose between 0.1 to 1"),
gr.Slider(0.1, 1, value=1, step=0.1, label="beta", info="Choose between 0.1 to 1"),
"image",
"text"
],
outputs = "image",
description ="Add an Image and labels to be detected separated by commas(atleast 2)",
title = "Zero-shot Image Segmentation with Prompt",
examples=[
[0.4,1,"images/room.jpg","chair, plant , flower pot , white cabinet , paintings , decorative plates , books"],
[0.4,1,"images/seats.jpg","door,table,chairs"],
[0.3,0.8,"images/vegetables.jpg","carrot,white radish,brinjal,basket,potato"],
[0.5,1,"images/room2.jpg","door, plants, dog, coffe table, table lamp, carpet, door"]
],
# allow_flagging=False,
# analytics_enabled=False,
)
iface.launch()
|