File size: 3,680 Bytes
d1bffba
 
 
 
 
 
 
d1d4db7
 
d1bffba
 
 
 
 
 
c2e6eeb
 
 
 
 
d1bffba
 
 
c2e6eeb
d1bffba
 
 
 
 
 
 
 
 
 
 
 
c2e6eeb
d1d4db7
 
 
c2e6eeb
d367c2f
d1bffba
2677815
c2e6eeb
 
d1d4db7
 
c2e6eeb
d367c2f
d1bffba
458bcca
1f10ad6
 
 
 
d1d4db7
d1bffba
d1d4db7
 
 
 
 
 
c2e6eeb
458bcca
c2e6eeb
d1bffba
 
 
d367c2f
8e2ffcb
 
d367c2f
 
 
d1bffba
18e03d9
4a60e71
d1bffba
9519ee9
45d981b
 
 
d1bffba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import torch 
import cv2 
from matplotlib import pyplot as plt 
from segmentation_mask_overlay import overlay_masks
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
classes = list()

def create_rgb_mask(mask):
    color = tuple(np.random.choice(range(0,256), size=3))
    gray_3_channel = cv2.merge((mask, mask, mask))
    gray_3_channel[mask==255] = color
    return gray_3_channel.astype(np.uint8)


def detect_using_clip(image,prompts=[],threshould=0.4):
    predicted_masks = list()
    inputs = processor(
        text=prompts,
        images=[image] * len(prompts),
        padding="max_length",
        return_tensors="pt",
    )
    with torch.no_grad():  # Use 'torch.no_grad()' to disable gradient computation
        outputs = model(**inputs)
    preds = outputs.logits.unsqueeze(1)

    for i,prompt in enumerate(prompts):
        predicted_image =  torch.sigmoid(preds[i][0]).detach().cpu().numpy()
        predicted_image = np.where(predicted_image>threshould,255,0)
        predicted_masks.append(predicted_image)
    bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
    return bool_masks

def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
    alpha = 0.7
    image_resize = cv2.resize(image,(352,352))
    resize_image_copy = image_resize.copy()

    # for mask_image in predicted_images:
    #     resize_image_copy = cv2.addWeighted(resize_image_copy,alpha,mask_image,1-alpha,10)

    return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)     

def shot(alpha,beta,image,labels_text):
    if "," in labels_text:
        prompts = labels_text.split(',')
    else:
        prompts = [labels_text]
    
    prompts = list(map(lambda x: x.strip(),prompts))

    mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
    cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]

    resize_image = cv2.resize(image,(352,352))

    predicted_images  = detect_using_clip(image,prompts=prompts)
    category_image = overlay_masks(resize_image,np.stack(predicted_images,-1),labels=mask_labels,colors=cmap,alpha=alpha,beta=beta)

    return category_image

iface = gr.Interface(fn=shot,
                    inputs = [
                        gr.Slider(0.1, 1, value=0.4, step=0.1 , label="alpha", info="Choose between 0.1 to 1"),
                        gr.Slider(0.1, 1, value=1, step=0.1, label="beta", info="Choose between 0.1 to 1"),
                        "image",
                        "text"
                        ],
                    outputs = "image",
                    description ="Add an Image and  labels to be detected separated by commas(atleast 2)",
                    title = "Zero-shot Image Segmentation with Prompt",
                    examples=[
                        [0.4,1,"images/room.jpg","chair, plant , flower pot , white cabinet , paintings , decorative plates , books"],
                        [0.4,1,"images/seats.jpg","door,table,chairs"],
                        [0.3,0.8,"images/vegetables.jpg","carrot,white radish,brinjal,basket,potato"],
                        [0.5,1,"images/room2.jpg","door, plants, dog, coffe table, table lamp, carpet, door"]
                        ],
                    # allow_flagging=False, 
                    # analytics_enabled=False,
                )
iface.launch()