Spaces:
Sleeping
Sleeping
# # # Copyright ©️ 2022 Syed Salman Habeeb Quadri | |
# # # This file is part of Blatt. | |
# # # Blatt is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. | |
# # # Blatt is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |
# # # You should have received a copy of the GNU General Public License along with Blatt. If not, see <https://www.gnu.org/licenses/>. | |
import gradio as gr | |
import pickle | |
import os | |
from fastai.vision.all import load_learner | |
import logging | |
#logging.basicConfig(format='%(asctime)s %(message)s',) | |
# Setting the threshold of logger to DEBUG | |
#logger.setLevel(logging.DEBUG) | |
with open("list.dat", 'rb') as f: | |
categories = pickle.load(f) | |
#logging.warning(f"CATEGORIES: {type(categories)}") | |
#logging.warning(f"{type(categories[0])}") | |
model = load_learner("model.pkl") | |
def predict(img): | |
logging.warning(f"{type(img)}") | |
try: | |
logging.warning(f"Shape: {img.shape}") | |
except AttributeError: | |
logging.warning(f"Size: {img.size}") | |
pred, idx, probs = model.predict(img) | |
dict1 = dict(zip(categories, map(float, probs.numpy()))) | |
dict1 = dict(sorted(dict1.items(), key=lambda item : item[1])) | |
output = {key:dict1[key] for key in list(dict1.keys())[-3:]} | |
sum = 0 | |
for i in list(dict1.keys())[-3:]: | |
sum += dict1[i] | |
output.update({"Other" : 1.0 - sum}) | |
if output['Other'] < 0: | |
output['Other'] = 0 | |
return output | |
image = gr.inputs.Image(shape=(256, 256)) | |
label = gr.outputs.Label() | |
text = "<a color='#00FF00'>Keep the background dark and uniform for best results<a>" | |
examples = ["Potato_late_blight.jpg", "apple_black_rot.jpg", "apple_leaf.jpg"] | |
examples = [os.path.join("images", example) for example in examples] | |
interface = gr.Interface(fn=predict, inputs=image, outputs=label, examples=examples, description=text) | |
interface.launch() |