Tooth / app.py
SalmanAboAraj's picture
Update app.py
a47c5f2 verified
import platform
import pathlib
import gradio as gr
import numpy as np
import cv2
from tensorflow.keras.models import load_model
from huggingface_hub import hf_hub_download
# إصلاح مشكلة المسارات في Windows
plt = platform.system()
pathlib.WindowsPath = pathlib.PosixPath
# تحميل النموذج من Hugging Face
model_path = hf_hub_download(repo_id="SalmanAboAraj/Tooth1", filename="unet_model_256.h5")
model = load_model(model_path)
# تعريف ألوان الفئات (من بياناتك)
COLOR_MAP = {
0: (0, 0, 0), # Background
1: (215, 179, 255), # Bone
2: (246, 51, 81), # Cavity
3: (58, 132, 255), # Crown
4: (134, 202, 218), # Dental Implant
5: (221, 195, 130), # Dental Implant Crown
6: (255, 255, 127), # Dentin
7: (255, 255, 255), # Enamel
8: (1, 13, 27), # Filling Metal
9: (0, 133, 255), # Filling Non-Metal
10: (24, 250, 143), # Periapical Radiolucence
11: (255, 105, 248), # Pulp
12: (17, 253, 231), # Root Canal
13: (255, 146, 119), # Sinus
14: (131, 224, 112) # Missing
}
# وظيفة التنبؤ
def predict(image):
original_height, original_width, _ = image.shape
# تحويل الصورة إلى حجم يناسب النموذج
image_resized = cv2.resize(image, (256, 256))
image_resized = image_resized / 255.0
image_resized = np.expand_dims(image_resized, axis=0)
# التنبؤ بالقناع
mask_pred = model.predict(image_resized)[0] # الإخراج يكون (256, 256, 15)
# تحويل القناع إلى صورة بألوان الفئات
mask_class = np.argmax(mask_pred, axis=-1) # إخراج التصنيفات (256, 256)
mask_colored = np.zeros((256, 256, 3), dtype=np.uint8)
for class_idx, color in COLOR_MAP.items():
mask_colored[mask_class == class_idx] = color
# إرجاع القناع بنفس أبعاد الصورة الأصلية
mask_final = cv2.resize(mask_colored, (original_width, original_height), interpolation=cv2.INTER_NEAREST)
return mask_final
# إنشاء واجهة Gradio
with gr.Blocks() as iface:
gr.Markdown("# Tooth Segmentation Model")
gr.Markdown("Upload a dental X-ray image to generate the annotation mask.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input X-ray Image", type="numpy")
submit_button = gr.Button("Predict")
with gr.Column():
output_image = gr.Image(label="Annotation Mask", type="numpy")
submit_button.click(fn=predict, inputs=input_image, outputs=output_image)
if __name__ == "__main__":
iface.launch()