anonymoussubmitter222
added app file
e63fe3d
raw
history blame
13.5 kB
#!/usr/bin/env/python3
"""Recipe for training a wav2vec-based ctc ASR system with librispeech.
The system employs wav2vec as its encoder. Decoding is performed with
ctc greedy decoder.
To run this recipe, do the following:
> python train_with_wav2vec.py hparams/train_with_wav2vec.yaml
The neural network is trained on CTC likelihood target and character units
are used as basic recognition tokens. Training is performed on the full
LibriSpeech dataset (960 h).
Authors
* Sung-Lin Yeh 2021
* Titouan Parcollet 2021
* Ju-Chieh Chou 2020
* Mirco Ravanelli 2020
* Abdel Heba 2020
* Peter Plantinga 2020
* Samuele Cornell 2020
"""
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
from pyctcdecode import build_ctcdecoder
logger = logging.getLogger(__name__)
# Define training procedure
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
tokens_bos, _ = batch.tokens_bos
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
# Forward pass
feats = self.modules.wav2vec2(wavs)
x = self.modules.enc(feats.detach())[0]
#x = self.modules.enc(feats.detach())
# Compute outputs
p_tokens = None
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
if stage != sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
return p_ctc, wav_lens, p_tokens
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
p_ctc, wav_lens, predicted_tokens = predictions
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0)
tokens_eos_lens = torch.cat(
[tokens_eos_lens, tokens_eos_lens], dim=0
)
tokens = torch.cat([tokens, tokens], dim=0)
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
loss = loss_ctc
if stage != sb.Stage.TRAIN:
# Decode token terms to words
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
predictions = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
loss.backward()
if self.check_gradients(loss):
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.wav2vec_optimizer.zero_grad()
self.model_optimizer.zero_grad()
return loss.detach()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
valid_data = valid_data.filtered_sorted(sort_key="duration")
# test is separate
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
sig = sb.dataio.dataio.read_audio(wav)
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"bos_label": hparams["bos_index"],
"eos_label": hparams["eos_index"],
"blank_label": hparams["blank_index"],
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets,
["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"],
)
return train_data, valid_data, test_datasets, label_encoder
if __name__ == "__main__":
# CLI:
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
print(labels)
labels = [""] + labels[1:]
print(len(labels))
decoder = build_ctcdecoder(
labels,
kenlm_model_path="/gpfsstore/rech/nou/uzn19yk/4-gram.arpa", # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1.0, # tuned on a val set
)
# Dataset prep (parsing Librispeech)
from librispeech_prepare import prepare_librispeech # noqa
# multi-gpu (ddp) save data preparation
"""
run_on_main(
prepare_librispeech,
kwargs={
"data_folder": hparams["data_folder"],
"tr_splits": hparams["train_splits"],
"dev_splits": hparams["dev_splits"],
"te_splits": hparams["test_splits"],
"save_folder": hparams["output_folder"],
"merge_lst": hparams["train_splits"],
"merge_name": "train.csv",
"skip_prep": hparams["skip_prep"],
},
)
"""
# here we create the datasets objects as well as tokenization and encoding
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
hparams
)
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
asr_brain.tokenizer = label_encoder
# Training
asr_brain.fit(
asr_brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=hparams["train_dataloader_opts"],
valid_loader_kwargs=hparams["valid_dataloader_opts"],
)
# Testing
for k in test_datasets.keys(): # keys are test_clean, test_other etc
asr_brain.hparams.wer_file = os.path.join(
hparams["output_folder"], "wer_{}.txt".format(k)
)
asr_brain.evaluate(
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_opts"]
)