Tunisian-ASR-v0 / app.py
anonymoussubmitter222
added description
a03fd36
raw
history blame
15.4 kB
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
import torchaudio
import numpy as np
from pyctcdecode import build_ctcdecoder
hparams_file, run_opts, overrides = sb.parse_arguments(["wavlm_partly_frozen.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
print(labels)
labels = [""] + labels[1:]
print(len(labels))
# Dataset prep (parsing Librispeech)
resampler_8000 = T.Resample(8000, 16000, dtype=torch.float)
resampler_44100 =T.Resample(44100, 16000, dtype=torch.float)
resampler_48000 =T.Resample(48000, 16000, dtype=torch.float)
resamplers = {"8000": resampler_8000, "44100":resampler_44100, "48000": resampler_48000}
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
valid_data = valid_data.filtered_sorted(sort_key="duration")
# test is separate
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav", "sr")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav, sr):
sig = sb.dataio.dataio.read_audio(wav)
sig = resamplers[sr](sig)
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"bos_label": hparams["bos_index"],
"eos_label": hparams["eos_index"],
"blank_label": hparams["blank_index"],
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets,
["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"],
)
return train_data, valid_data, test_datasets, label_encoder
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
print(wavs)
tokens_bos, _ = batch.tokens_bos
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
# Forward pass
feats = self.modules.wav2vec2(wavs)
x = self.modules.enc(feats)
# Compute outputs
p_tokens = None
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
if stage != sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
return p_ctc, wav_lens, p_tokens
def treat_wav(self,sig):
feats = self.modules.wav2vec2(sig.to(self.device))
x = self.modules.enc(feats)
p_tokens = None
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
return " ".join(predicted_words[0])
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
p_ctc, wav_lens, predicted_tokens = predictions
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0)
tokens_eos_lens = torch.cat(
[tokens_eos_lens, tokens_eos_lens], dim=0
)
tokens = torch.cat([tokens, tokens], dim=0)
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
loss = loss_ctc
if stage != sb.Stage.TRAIN:
# Decode token terms to words
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
predictions = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
loss.backward()
if self.check_gradients(loss):
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.wav2vec_optimizer.zero_grad()
self.model_optimizer.zero_grad()
return loss.detach()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
hparams
)
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
decoder = build_ctcdecoder(
labels,
kenlm_model_path="tunisian.arpa", # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
run_opts["device"]="cpu"
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
description = """
# Global description
This is a speechbrain-based Automatic Speech Recognition (ASR) model for Tunisian arabic. It outputs tunisian transcriptions in arabic language. Since the language is unwritten, the transcriptions may vary. This model is the work of Salah Zaiem, PhD candidate, contact : [email protected]
# Pipeline description
This ASR system is composed of 2 different but linked blocks:
- Acoustic model (wavlm-large + CTC). A pretrained wavlm-larhe model (https://huggingface.co/microsoft/wavlm-large) is combined with two DNN layers and finetuned on a tunisian arabic dataset.
- KenLM based 4-gram language model, learned on the training data.
The obtained final acoustic representation is given to the CTC greedy decoder.
The system is trained with single channel recordings resampled at 16 khz. (The model should be good with audio resampled from 8khz)
#Limitations
Due to the nature of the available training data, the model may encounter issues when dealing with foreign words. So while it is common for Tunisian speakers to use (mainly french) foreign words, these will lead to more errors, we are working on improving this in further models.
Run is done on CPU to keep it free in this space. This leads to quite long running times on long sequences. If for your project or research, you want to transcribe long sequences, feel free to drop an email here : [email protected]
# Referencing SpeechBrain
This work has no published paper yet, and may never have. If you use it in an academic setting, please cite the original SpeechBrain paper :
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
"""
asr_brain.device= "cpu"
asr_brain.modules.to("cpu")
asr_brain.tokenizer = label_encoder
from enum import Enum, auto
class Stage(Enum):
TRAIN = auto()
VALID = auto()
TEST = auto()
asr_brain.on_evaluate_start()
asr_brain.modules.eval()
import gradio as gr
def treat_wav_file(file_mic, file_upload, resamplers = resamplers,asr=asr_brain, device="cpu") :
if (file_mic is not None) and (file_upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
wav = file_mic
elif (file_mic is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif file_mic is not None:
wav = file_mic
else:
wav = file_upload
sig, sr = torchaudio.load(wav)
tensor_wav = sig.to(device)
resampled = resamplers[str(sr)](tensor_wav)
sentence = asr_brain.treat_wav(resampled)
return sentence
gr.Interface(
fn=treat_wav_file,
inputs=[gr.inputs.Audio(source="microphone", type='filepath', optional=True),
gr.inputs.Audio(source="upload", type='filepath', optional=True)]
,outputs="text").launch()