Spaces:
Build error
Build error
import os | |
import sys | |
import torch | |
import logging | |
import speechbrain as sb | |
from speechbrain.utils.distributed import run_on_main | |
from hyperpyyaml import load_hyperpyyaml | |
from pathlib import Path | |
import torchaudio.transforms as T | |
import torchaudio | |
import numpy as np | |
from pyctcdecode import build_ctcdecoder | |
hparams_file, run_opts, overrides = sb.parse_arguments(["wavlm_partly_frozen.yaml"]) | |
# If distributed_launch=True then | |
# create ddp_group with the right communication protocol | |
sb.utils.distributed.ddp_init_group(run_opts) | |
with open(hparams_file) as fin: | |
hparams = load_hyperpyyaml(fin, overrides) | |
# Create experiment directory | |
sb.create_experiment_directory( | |
experiment_directory=hparams["output_folder"], | |
hyperparams_to_save=hparams_file, | |
overrides=overrides, | |
) | |
def read_labels_file(labels_file): | |
with open(labels_file, "r") as lf: | |
lines = lf.read().splitlines() | |
division = "===" | |
numbers = {} | |
for line in lines : | |
if division in line : | |
break | |
string, number = line.split("=>") | |
number = int(number) | |
string = string[1:-2] | |
numbers[number] = string | |
return [numbers[x] for x in range(len(numbers))] | |
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt")) | |
print(labels) | |
labels = [""] + labels[1:] | |
print(len(labels)) | |
# Dataset prep (parsing Librispeech) | |
resampler_8000 = T.Resample(8000, 16000, dtype=torch.float) | |
resampler_44100 =T.Resample(44100, 16000, dtype=torch.float) | |
resampler_48000 =T.Resample(48000, 16000, dtype=torch.float) | |
resamplers = {"8000": resampler_8000, "44100":resampler_44100, "48000": resampler_48000} | |
def dataio_prepare(hparams): | |
"""This function prepares the datasets to be used in the brain class. | |
It also defines the data processing pipeline through user-defined functions.""" | |
data_folder = hparams["data_folder"] | |
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, | |
) | |
if hparams["sorting"] == "ascending": | |
# we sort training data to speed up training and get better results. | |
train_data = train_data.filtered_sorted(sort_key="duration") | |
# when sorting do not shuffle in dataloader ! otherwise is pointless | |
hparams["train_dataloader_opts"]["shuffle"] = False | |
elif hparams["sorting"] == "descending": | |
train_data = train_data.filtered_sorted( | |
sort_key="duration", reverse=True | |
) | |
# when sorting do not shuffle in dataloader ! otherwise is pointless | |
hparams["train_dataloader_opts"]["shuffle"] = False | |
elif hparams["sorting"] == "random": | |
pass | |
else: | |
raise NotImplementedError( | |
"sorting must be random, ascending or descending" | |
) | |
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, | |
) | |
valid_data = valid_data.filtered_sorted(sort_key="duration") | |
# test is separate | |
test_datasets = {} | |
for csv_file in hparams["test_csv"]: | |
name = Path(csv_file).stem | |
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=csv_file, replacements={"data_root": data_folder} | |
) | |
test_datasets[name] = test_datasets[name].filtered_sorted( | |
sort_key="duration" | |
) | |
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] | |
# 2. Define audio pipeline: | |
def audio_pipeline(wav, sr): | |
sig = sb.dataio.dataio.read_audio(wav) | |
sig = resamplers[sr](sig) | |
return sig | |
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) | |
label_encoder = sb.dataio.encoder.CTCTextEncoder() | |
# 3. Define text pipeline: | |
def text_pipeline(wrd): | |
yield wrd | |
char_list = list(wrd) | |
yield char_list | |
tokens_list = label_encoder.encode_sequence(char_list) | |
yield tokens_list | |
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list)) | |
yield tokens_bos | |
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]]) | |
yield tokens_eos | |
tokens = torch.LongTensor(tokens_list) | |
yield tokens | |
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) | |
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") | |
special_labels = { | |
"bos_label": hparams["bos_index"], | |
"eos_label": hparams["eos_index"], | |
"blank_label": hparams["blank_index"], | |
} | |
label_encoder.load_or_create( | |
path=lab_enc_file, | |
from_didatasets=[train_data], | |
output_key="char_list", | |
special_labels=special_labels, | |
sequence_input=True, | |
) | |
# 4. Set output: | |
sb.dataio.dataset.set_output_keys( | |
datasets, | |
["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"], | |
) | |
return train_data, valid_data, test_datasets, label_encoder | |
class ASR(sb.Brain): | |
def compute_forward(self, batch, stage): | |
"""Forward computations from the waveform batches to the output probabilities.""" | |
batch = batch.to(self.device) | |
wavs, wav_lens = batch.sig | |
print(wavs) | |
tokens_bos, _ = batch.tokens_bos | |
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) | |
# Forward pass | |
feats = self.modules.wav2vec2(wavs) | |
x = self.modules.enc(feats) | |
# Compute outputs | |
p_tokens = None | |
logits = self.modules.ctc_lin(x) | |
p_ctc = self.hparams.log_softmax(logits) | |
if stage != sb.Stage.TRAIN: | |
p_tokens = sb.decoders.ctc_greedy_decode( | |
p_ctc, wav_lens, blank_id=self.hparams.blank_index | |
) | |
return p_ctc, wav_lens, p_tokens | |
def treat_wav(self,sig): | |
feats = self.modules.wav2vec2(sig.to(self.device)) | |
x = self.modules.enc(feats) | |
p_tokens = None | |
logits = self.modules.ctc_lin(x) | |
p_ctc = self.hparams.log_softmax(logits) | |
predicted_words =[] | |
for logs in p_ctc: | |
text = decoder.decode(logs.detach().cpu().numpy()) | |
predicted_words.append(text.split(" ")) | |
return " ".join(predicted_words[0]) | |
def compute_objectives(self, predictions, batch, stage): | |
"""Computes the loss (CTC+NLL) given predictions and targets.""" | |
p_ctc, wav_lens, predicted_tokens = predictions | |
ids = batch.id | |
tokens_eos, tokens_eos_lens = batch.tokens_eos | |
tokens, tokens_lens = batch.tokens | |
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN: | |
tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0) | |
tokens_eos_lens = torch.cat( | |
[tokens_eos_lens, tokens_eos_lens], dim=0 | |
) | |
tokens = torch.cat([tokens, tokens], dim=0) | |
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0) | |
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) | |
loss = loss_ctc | |
if stage != sb.Stage.TRAIN: | |
# Decode token terms to words | |
predicted_words =[] | |
for logs in p_ctc: | |
text = decoder.decode(logs.detach().cpu().numpy()) | |
predicted_words.append(text.split(" ")) | |
target_words = [wrd.split(" ") for wrd in batch.wrd] | |
self.wer_metric.append(ids, predicted_words, target_words) | |
self.cer_metric.append(ids, predicted_words, target_words) | |
return loss | |
def fit_batch(self, batch): | |
"""Train the parameters given a single batch in input""" | |
predictions = self.compute_forward(batch, sb.Stage.TRAIN) | |
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN) | |
loss.backward() | |
if self.check_gradients(loss): | |
self.wav2vec_optimizer.step() | |
self.model_optimizer.step() | |
self.wav2vec_optimizer.zero_grad() | |
self.model_optimizer.zero_grad() | |
return loss.detach() | |
def evaluate_batch(self, batch, stage): | |
"""Computations needed for validation/test batches""" | |
predictions = self.compute_forward(batch, stage=stage) | |
with torch.no_grad(): | |
loss = self.compute_objectives(predictions, batch, stage=stage) | |
return loss.detach() | |
def on_stage_start(self, stage, epoch): | |
"""Gets called at the beginning of each epoch""" | |
if stage != sb.Stage.TRAIN: | |
self.cer_metric = self.hparams.cer_computer() | |
self.wer_metric = self.hparams.error_rate_computer() | |
def on_stage_end(self, stage, stage_loss, epoch): | |
"""Gets called at the end of an epoch.""" | |
# Compute/store important stats | |
stage_stats = {"loss": stage_loss} | |
if stage == sb.Stage.TRAIN: | |
self.train_stats = stage_stats | |
else: | |
stage_stats["CER"] = self.cer_metric.summarize("error_rate") | |
stage_stats["WER"] = self.wer_metric.summarize("error_rate") | |
# Perform end-of-iteration things, like annealing, logging, etc. | |
if stage == sb.Stage.VALID: | |
old_lr_model, new_lr_model = self.hparams.lr_annealing_model( | |
stage_stats["loss"] | |
) | |
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( | |
stage_stats["loss"] | |
) | |
sb.nnet.schedulers.update_learning_rate( | |
self.model_optimizer, new_lr_model | |
) | |
sb.nnet.schedulers.update_learning_rate( | |
self.wav2vec_optimizer, new_lr_wav2vec | |
) | |
self.hparams.train_logger.log_stats( | |
stats_meta={ | |
"epoch": epoch, | |
"lr_model": old_lr_model, | |
"lr_wav2vec": old_lr_wav2vec, | |
}, | |
train_stats=self.train_stats, | |
valid_stats=stage_stats, | |
) | |
self.checkpointer.save_and_keep_only( | |
meta={"WER": stage_stats["WER"]}, min_keys=["WER"], | |
) | |
elif stage == sb.Stage.TEST: | |
self.hparams.train_logger.log_stats( | |
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, | |
test_stats=stage_stats, | |
) | |
with open(self.hparams.wer_file, "w") as w: | |
self.wer_metric.write_stats(w) | |
def init_optimizers(self): | |
"Initializes the wav2vec2 optimizer and model optimizer" | |
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( | |
self.modules.wav2vec2.parameters() | |
) | |
self.model_optimizer = self.hparams.model_opt_class( | |
self.hparams.model.parameters() | |
) | |
if self.checkpointer is not None: | |
self.checkpointer.add_recoverable( | |
"wav2vec_opt", self.wav2vec_optimizer | |
) | |
self.checkpointer.add_recoverable("modelopt", self.model_optimizer) | |
label_encoder = sb.dataio.encoder.CTCTextEncoder() | |
train_data, valid_data, test_datasets, label_encoder = dataio_prepare( | |
hparams | |
) | |
# We dynamicaly add the tokenizer to our brain class. | |
# NB: This tokenizer corresponds to the one used for the LM!! | |
decoder = build_ctcdecoder( | |
labels, | |
kenlm_model_path="tunisian.arpa", # either .arpa or .bin file | |
alpha=0.5, # tuned on a val set | |
beta=1, # tuned on a val set | |
) | |
run_opts["device"]="cpu" | |
asr_brain = ASR( | |
modules=hparams["modules"], | |
hparams=hparams, | |
run_opts=run_opts, | |
checkpointer=hparams["checkpointer"], | |
) | |
description = """ | |
# Global description | |
This is a speechbrain-based Automatic Speech Recognition (ASR) model for Tunisian arabic. It outputs tunisian transcriptions in arabic language. Since the language is unwritten, the transcriptions may vary. This model is the work of Salah Zaiem, PhD candidate, contact : [email protected] | |
# Pipeline description | |
This ASR system is composed of 2 different but linked blocks: | |
- Acoustic model (wavlm-large + CTC). A pretrained wavlm-larhe model (https://huggingface.co/microsoft/wavlm-large) is combined with two DNN layers and finetuned on a tunisian arabic dataset. | |
- KenLM based 4-gram language model, learned on the training data. | |
The obtained final acoustic representation is given to the CTC greedy decoder. | |
The system is trained with single channel recordings resampled at 16 khz. (The model should be good with audio resampled from 8khz) | |
#Limitations | |
Due to the nature of the available training data, the model may encounter issues when dealing with foreign words. So while it is common for Tunisian speakers to use (mainly french) foreign words, these will lead to more errors, we are working on improving this in further models. | |
Run is done on CPU to keep it free in this space. This leads to quite long running times on long sequences. If for your project or research, you want to transcribe long sequences, feel free to drop an email here : [email protected] | |
# Referencing SpeechBrain | |
This work has no published paper yet, and may never have. If you use it in an academic setting, please cite the original SpeechBrain paper : | |
``` | |
@misc{SB2021, | |
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, | |
title = {SpeechBrain}, | |
year = {2021}, | |
publisher = {GitHub}, | |
journal = {GitHub repository}, | |
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, | |
} | |
``` | |
""" | |
asr_brain.device= "cpu" | |
asr_brain.modules.to("cpu") | |
asr_brain.tokenizer = label_encoder | |
from enum import Enum, auto | |
class Stage(Enum): | |
TRAIN = auto() | |
VALID = auto() | |
TEST = auto() | |
asr_brain.on_evaluate_start() | |
asr_brain.modules.eval() | |
import gradio as gr | |
def treat_wav_file(file_mic, file_upload, resamplers = resamplers,asr=asr_brain, device="cpu") : | |
if (file_mic is not None) and (file_upload is not None): | |
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
wav = file_mic | |
elif (file_mic is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
elif file_mic is not None: | |
wav = file_mic | |
else: | |
wav = file_upload | |
sig, sr = torchaudio.load(wav) | |
tensor_wav = sig.to(device) | |
resampled = resamplers[str(sr)](tensor_wav) | |
sentence = asr_brain.treat_wav(resampled) | |
return sentence | |
gr.Interface( | |
fn=treat_wav_file, | |
inputs=[gr.inputs.Audio(source="microphone", type='filepath', optional=True), | |
gr.inputs.Audio(source="upload", type='filepath', optional=True)] | |
,outputs="text").launch() | |