|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import json |
|
import os |
|
|
|
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
def load_rooms(): |
|
if os.path.exists("rooms.json"): |
|
with open("rooms.json", "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
return {} |
|
|
|
def save_rooms(rooms): |
|
with open("rooms.json", "w", encoding="utf-8") as f: |
|
json.dump(rooms, f, ensure_ascii=False, indent=4) |
|
|
|
def create_room(rooms, room_name): |
|
if room_name not in rooms: |
|
rooms[room_name] = [] |
|
save_rooms(rooms) |
|
return rooms |
|
|
|
def switch_room(room_name, rooms): |
|
return rooms.get(room_name, []) |
|
|
|
def add_message_to_room(room_name, rooms, message, response): |
|
if room_name in rooms: |
|
rooms[room_name].append((message, response)) |
|
save_rooms(rooms) |
|
|
|
def chat_interface(room_name, rooms, message, history, system_message, max_tokens, temperature, top_p): |
|
response = list(respond(message, history, system_message, max_tokens, temperature, top_p))[-1] |
|
add_message_to_room(room_name, rooms, message, response) |
|
return response, history + [(message, response)] |
|
|
|
def main(): |
|
rooms = load_rooms() |
|
room_names = list(rooms.keys()) |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
room_name_dropdown = gr.Dropdown(room_names, label="会話部屋", value=room_names[0] if room_names else None) |
|
new_room_name = gr.Textbox(label="新しい会話部屋の名前") |
|
create_room_button = gr.Button("新しい会話部屋を作成") |
|
create_room_button.click( |
|
fn=lambda name, r: (create_room(r, name), name, switch_room(name, r)), |
|
inputs=[new_room_name, gr.State(rooms)], |
|
outputs=[room_name_dropdown, room_name_dropdown, gr.Chatbot] |
|
) |
|
room_name_dropdown.change( |
|
fn=lambda name, r: (switch_room(name, r),), |
|
inputs=[room_name_dropdown, gr.State(rooms)], |
|
outputs=[gr.Chatbot] |
|
) |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(label="会話") |
|
message = gr.Textbox(label="メッセージ") |
|
system_message = gr.Textbox(value="あなたは親切なチャットボットでありQwenというLLMです。", label="システムメッセージ") |
|
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大") |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核 sampling)") |
|
submit_button = gr.Button("送信") |
|
submit_button.click( |
|
fn=chat_interface, |
|
inputs=[room_name_dropdown, gr.State(rooms), message, chatbot, system_message, max_tokens, temperature, top_p], |
|
outputs=[chatbot, chatbot] |
|
) |
|
|
|
demo.launch() |
|
|
|
if __name__ == "__main__": |
|
main() |