SaiShailesh commited on
Commit
4c1e086
·
verified ·
1 Parent(s): fb46e04

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +138 -0
  2. requirements.txt +139 -0
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from torch import nn
4
+ from diffusers import DDPMScheduler, UNet2DModel
5
+ import matplotlib.pyplot as plt
6
+ from tqdm.auto import tqdm
7
+
8
+ # Reuse your existing model code
9
+ class ClassConditionedUnet(nn.Module):
10
+ def __init__(self, num_classes=3, class_emb_size=12):
11
+ super().__init__()
12
+ self.class_emb = nn.Embedding(num_classes, class_emb_size)
13
+ self.model = UNet2DModel(
14
+ sample_size=64,
15
+ in_channels=3 + class_emb_size,
16
+ out_channels=3,
17
+ layers_per_block=2,
18
+ block_out_channels=(64, 128, 256, 512),
19
+ down_block_types=(
20
+ "DownBlock2D",
21
+ "DownBlock2D",
22
+ "AttnDownBlock2D",
23
+ "AttnDownBlock2D",
24
+ ),
25
+ up_block_types=(
26
+ "AttnUpBlock2D",
27
+ "AttnUpBlock2D",
28
+ "UpBlock2D",
29
+ "UpBlock2D",
30
+ ),
31
+ )
32
+
33
+ def forward(self, x, t, class_labels):
34
+ bs, ch, w, h = x.shape
35
+ class_cond = self.class_emb(class_labels)
36
+ class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
37
+ net_input = torch.cat((x, class_cond), 1)
38
+ return self.model(net_input, t).sample
39
+
40
+ @st.cache_resource
41
+ def load_model(model_path):
42
+ """Load the model with caching to avoid reloading"""
43
+ device = 'cpu' # For deployment, we'll use CPU
44
+ net = ClassConditionedUnet().to(device)
45
+ noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')
46
+ checkpoint = torch.load(model_path, map_location='cpu')
47
+ net.load_state_dict(checkpoint['model_state_dict'])
48
+ return net, noise_scheduler
49
+
50
+ def generate_mixed_faces(net, noise_scheduler, mix_weights, num_images=1):
51
+ """Generate faces with mixed ethnic features"""
52
+ device = next(net.parameters()).device
53
+ net.eval()
54
+ with torch.no_grad():
55
+ x = torch.randn(num_images, 3, 64, 64).to(device)
56
+
57
+ # Get embeddings for all classes
58
+ emb_asian = net.class_emb(torch.zeros(num_images).long().to(device))
59
+ emb_indian = net.class_emb(torch.ones(num_images).long().to(device))
60
+ emb_european = net.class_emb(torch.full((num_images,), 2).to(device))
61
+
62
+ progress_bar = st.progress(0)
63
+ for idx, t in enumerate(noise_scheduler.timesteps):
64
+ # Update progress bar
65
+ progress_bar.progress(idx / len(noise_scheduler.timesteps))
66
+
67
+ # Mix embeddings according to weights
68
+ mixed_emb = (
69
+ mix_weights[0] * emb_asian +
70
+ mix_weights[1] * emb_indian +
71
+ mix_weights[2] * emb_european
72
+ )
73
+
74
+ # Override embedding layer temporarily
75
+ original_forward = net.class_emb.forward
76
+ net.class_emb.forward = lambda _: mixed_emb
77
+
78
+ residual = net(x, t, torch.zeros(num_images).long().to(device))
79
+ x = noise_scheduler.step(residual, t, x).prev_sample
80
+
81
+ # Restore original embedding layer
82
+ net.class_emb.forward = original_forward
83
+
84
+ progress_bar.progress(1.0)
85
+
86
+ x = (x.clamp(-1, 1) + 1) / 2
87
+ return x
88
+
89
+ def main():
90
+ st.title("AI Face Generator with Ethnic Features Mixing")
91
+
92
+ # Load model
93
+ try:
94
+ net, noise_scheduler = load_model('final_model/final_diffusion_model.pt')
95
+ except Exception as e:
96
+ st.error(f"Error loading model: {str(e)}")
97
+ return
98
+
99
+ # Create sliders for ethnicity percentages
100
+ st.subheader("Adjust Ethnicity Mix")
101
+ col1, col2, col3 = st.columns(3)
102
+
103
+ with col1:
104
+ asian_pct = st.slider("Asian Features %", 0, 100, 33, 1)
105
+ with col2:
106
+ indian_pct = st.slider("Indian Features %", 0, 100, 33, 1)
107
+ with col3:
108
+ european_pct = st.slider("European Features %", 0, 100, 34, 1)
109
+
110
+ # Calculate total and normalize if needed
111
+ total = asian_pct + indian_pct + european_pct
112
+ if total == 0:
113
+ st.warning("Total percentage cannot be 0%. Please adjust the sliders.")
114
+ return
115
+
116
+ # Normalize weights to sum to 1
117
+ weights = [asian_pct/total, indian_pct/total, european_pct/total]
118
+
119
+ # Display current mix
120
+ st.write("Current mix (normalized):")
121
+ st.write(f"Asian: {weights[0]:.2%}, Indian: {weights[1]:.2%}, European: {weights[2]:.2%}")
122
+
123
+ # Generate button
124
+ if st.button("Generate Face"):
125
+ try:
126
+ with st.spinner("Generating face..."):
127
+ # Generate the image
128
+ generated_images = generate_mixed_faces(net, noise_scheduler, weights)
129
+
130
+ # Convert to numpy and display
131
+ img = generated_images[0].permute(1, 2, 0).cpu().numpy()
132
+ st.image(img, caption="Generated Face", use_column_width=True)
133
+
134
+ except Exception as e:
135
+ st.error(f"Error generating image: {str(e)}")
136
+
137
+ if __name__ == "__main__":
138
+ main()
requirements.txt ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate==0.34.2
2
+ aiohappyeyeballs==2.4.0
3
+ aiohttp==3.10.5
4
+ aiosignal==1.3.1
5
+ altair==5.4.1
6
+ annotated-types==0.7.0
7
+ anyio==4.4.0
8
+ asttokens==2.4.1
9
+ async-timeout==4.0.3
10
+ attrs==24.2.0
11
+ blinker==1.8.2
12
+ boto3==1.35.54
13
+ botocore==1.35.54
14
+ cachetools==5.5.0
15
+ certifi==2024.8.30
16
+ charset-normalizer==3.3.2
17
+ click==8.1.7
18
+ colorama==0.4.6
19
+ comm==0.2.2
20
+ contourpy==1.3.1
21
+ cycler==0.12.1
22
+ databricks-api==0.9.0
23
+ databricks-cli==0.18.0
24
+ dataclasses==0.6
25
+ debugpy==1.8.5
26
+ decorator==5.1.1
27
+ diffusers==0.31.0
28
+ exceptiongroup==1.2.2
29
+ executing==2.1.0
30
+ faiss-cpu==1.8.0.post1
31
+ filelock==3.16.0
32
+ fonttools==4.55.3
33
+ frozenlist==1.4.1
34
+ fsspec==2024.9.0
35
+ gitdb==4.0.11
36
+ GitPython==3.1.43
37
+ greenlet==3.1.0
38
+ h11==0.14.0
39
+ httpcore==1.0.5
40
+ httpx==0.27.2
41
+ huggingface==0.0.1
42
+ huggingface-hub==0.24.7
43
+ idna==3.10
44
+ importlib_metadata==8.5.0
45
+ ipykernel==6.29.5
46
+ ipython==8.27.0
47
+ jedi==0.19.1
48
+ Jinja2==3.1.4
49
+ jmespath==1.0.1
50
+ joblib==1.4.2
51
+ johnsnowlabs==5.5.0
52
+ jsonpatch==1.33
53
+ jsonpointer==3.0.0
54
+ jsonschema==4.23.0
55
+ jsonschema-specifications==2023.12.1
56
+ jupyter_client==8.6.3
57
+ jupyter_core==5.7.2
58
+ kiwisolver==1.4.7
59
+ langchain==0.3.0
60
+ langchain-core==0.3.0
61
+ langchain-text-splitters==0.3.0
62
+ langsmith==0.1.121
63
+ markdown-it-py==3.0.0
64
+ MarkupSafe==2.1.5
65
+ matplotlib==3.9.3
66
+ matplotlib-inline==0.1.7
67
+ mdurl==0.1.2
68
+ mpmath==1.3.0
69
+ multidict==6.1.0
70
+ narwhals==1.8.1
71
+ nest-asyncio==1.6.0
72
+ networkx==3.3
73
+ nlu==5.4.1
74
+ numpy==1.26.4
75
+ oauthlib==3.2.2
76
+ orjson==3.10.7
77
+ packaging==24.1
78
+ pandas==2.2.2
79
+ parso==0.8.4
80
+ pillow==10.4.0
81
+ platformdirs==4.3.3
82
+ prompt_toolkit==3.0.47
83
+ protobuf==5.28.1
84
+ psutil==6.0.0
85
+ pure_eval==0.2.3
86
+ py4j==0.10.9
87
+ pyarrow==17.0.0
88
+ pydantic==2.9.1
89
+ pydantic_core==2.23.3
90
+ pydeck==0.9.1
91
+ Pygments==2.18.0
92
+ PyJWT==2.9.0
93
+ pyparsing==3.2.0
94
+ pyspark==3.0.2
95
+ python-dateutil==2.9.0.post0
96
+ pytz==2024.2
97
+ pywin32==306
98
+ PyYAML==6.0.2
99
+ pyzmq==26.2.0
100
+ referencing==0.35.1
101
+ regex==2024.9.11
102
+ requests==2.32.3
103
+ rich==13.8.1
104
+ rpds-py==0.20.0
105
+ s3transfer==0.10.3
106
+ safetensors==0.4.5
107
+ scikit-learn==1.5.2
108
+ scipy==1.14.1
109
+ sentence-transformers==3.1.0
110
+ six==1.16.0
111
+ smmap==5.0.1
112
+ sniffio==1.3.1
113
+ spark-nlp==5.5.0
114
+ spark-nlp-display==5.0
115
+ SQLAlchemy==2.0.35
116
+ stack-data==0.6.3
117
+ streamlit==1.38.0
118
+ streamlit-chat==0.1.1
119
+ svgwrite==1.4
120
+ sympy==1.13.1
121
+ tabulate==0.9.0
122
+ tenacity==8.5.0
123
+ threadpoolctl==3.5.0
124
+ tiktoken==0.7.0
125
+ tokenizers==0.19.1
126
+ toml==0.10.2
127
+ torch==2.5.1
128
+ torchvision==0.20.1
129
+ tornado==6.4.1
130
+ tqdm==4.66.5
131
+ traitlets==5.14.3
132
+ transformers==4.44.2
133
+ typing_extensions==4.12.2
134
+ tzdata==2024.1
135
+ urllib3==2.2.3
136
+ watchdog==4.0.2
137
+ wcwidth==0.2.13
138
+ yarl==1.11.1
139
+ zipp==3.21.0