Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import vertexai | |
from langchain.llms import VertexAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chat_models import ChatOpenAI | |
from typing import Any | |
from langchain.base_language import BaseLanguageModel | |
from langchain.chains.llm import LLMChain | |
from langchain.embeddings import VertexAIEmbeddings | |
import streamlit as st | |
import gradio as gr | |
from vertexai.language_models import TextGenerationModel | |
vertexai.init(project="agileai-poc", location="us-central1") | |
llm = VertexAI( | |
model_name="text-bison@001", | |
max_output_tokens=256, | |
temperature=0.1, | |
top_p=0.8, | |
top_k=40, | |
verbose=True, | |
) | |
prompt_file = "prompt_template.txt" | |
print(prompt_file) | |
class ProductDescGen(LLMChain): | |
"""LLM Chain specifically for generating multi paragraph rich text product description using emojis.""" | |
def from_llm( | |
cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any | |
) -> ProductDescGen: | |
"""Load ProductDescGen Chain from LLM.""" | |
return cls(llm=llm, prompt=prompt, **kwargs) | |
def product_desc_generator(product_name, keywords): | |
with open(prompt_file, "r") as file: | |
prompt_template = file.read() | |
PROMPT = PromptTemplate( | |
input_variables=["product_name", "keywords"], template=prompt_template | |
) | |
ProductDescGen_chain = ProductDescGen.from_llm(llm=llm, prompt=PROMPT) | |
ProductDescGen_query = ProductDescGen_chain.apply_and_parse( | |
[{"product_name": product_name, "keywords": keywords}] | |
) | |
return ProductDescGen_query[0]["text"] | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1>Welcome to Product Description Generator</h1>""") | |
gr.Markdown( | |
"Generate Product Description for your products instantly!<br>" | |
"Provide product name and keywords related to that product. Click on 'Generate Description' button and multi-paragraph rich text product description will be genrated instantly.<br>" | |
"Note: Generated product description is SEO compliant and can be used to populate product information." | |
) | |
with gr.Tab("Generate Product Description!"): | |
product_name = gr.Textbox( | |
label="Product Name", | |
placeholder="Nike Shoes", | |
) | |
keywords = gr.Textbox( | |
label="Keywords (separated by commas)", | |
placeholder="black shoes, leather shoes for men, water resistant", | |
) | |
product_description = gr.Textbox(label="Product Description") | |
click_button = gr.Button(value="Generate Description!") | |
click_button.click( | |
product_desc_generator, [ | |
product_name, keywords], product_description | |
) | |
demo.launch(share=True) | |