File size: 909 Bytes
08e4872
159fb0f
 
 
 
f7d5b45
e845a5d
c1c9c3a
 
742b795
01a716c
6040ac9
 
159fb0f
c1c9c3a
a1507f1
c47223a
a1507f1
c1c9c3a
 
1f1c04d
c1c9c3a
962146a
c1c9c3a
159fb0f
c1c9c3a
a1507f1
 
c47223a
4bfddf6
159fb0f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#import tensorflow_addons as tfa
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow_addons as tfa
import os
import numpy as np


labels= { 'Subway': 0,'Starbucks': 1,'McDonalds': 2,'Burger King': 3,'KFC': 4,'Other': 5}
HEIGHT,WIDTH=224,224
NUM_CLASSES=6

model=load_model('best_model.h5')

def classify_image(inp):
  inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
  inp = tf.keras.applications.nasnet.preprocess_input(inp) 
  prediction = model.predict(inp)
  label = dict((v,k) for k,v in labels.items())
  predicted_class_indices=np.argmax(prediction,axis=1)
  return {labels[i]: float(predicted_class_indices[i]) for i in range(NUM_CLASSES)}


    
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
label = gr.Label()

gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False)