Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.ensemble import RandomForestRegressor
|
5 |
+
from sklearn.metrics import mean_absolute_error
|
6 |
+
from flask import Flask, request, jsonify
|
7 |
+
|
8 |
+
# Step 1: Data Collection
|
9 |
+
def fetch_data():
|
10 |
+
api_key = 'YOUR_API_KEY' # Replace with your SportsData.io API key
|
11 |
+
response = requests.get(f"https://api.sportsdata.io/v3/nba/stats/json/PlayerSeasonStats/2023?key={api_key}")
|
12 |
+
data = response.json()
|
13 |
+
return pd.DataFrame(data)
|
14 |
+
|
15 |
+
# Step 2: Data Preprocessing
|
16 |
+
def preprocess_data(df):
|
17 |
+
df = df.dropna() # Remove rows with missing values
|
18 |
+
df = df[df['Minutes'] > 0] # Filter players with playing time
|
19 |
+
df['PointsPerGame'] = df['Points'] / df['Games']
|
20 |
+
return df
|
21 |
+
|
22 |
+
# Step 3: Feature Engineering
|
23 |
+
def engineer_features(df):
|
24 |
+
df['RecentForm'] = df['PointsPerGame'].rolling(window=5).mean().fillna(0)
|
25 |
+
df['HomeAdvantage'] = df['HomeGames'] / df['TotalGames']
|
26 |
+
return df
|
27 |
+
|
28 |
+
# Step 4: Model Training
|
29 |
+
def train_model(df):
|
30 |
+
X = df[['RecentForm', 'HomeAdvantage']]
|
31 |
+
y = df['PointsPerGame']
|
32 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
33 |
+
|
34 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
35 |
+
model.fit(X_train, y_train)
|
36 |
+
|
37 |
+
y_pred = model.predict(X_test)
|
38 |
+
mae = mean_absolute_error(y_test, y_pred)
|
39 |
+
print(f"Mean Absolute Error: {mae}")
|
40 |
+
|
41 |
+
return model
|
42 |
+
|
43 |
+
# Step 5: Deployment with Flask
|
44 |
+
app = Flask(__name__)
|
45 |
+
|
46 |
+
@app.route('/predict', methods=['POST'])
|
47 |
+
def predict():
|
48 |
+
data = request.json
|
49 |
+
input_features = [data['RecentForm'], data['HomeAdvantage']]
|
50 |
+
prediction = model.predict([input_features])[0]
|
51 |
+
return jsonify({'prediction': prediction})
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
# Fetch and preprocess data
|
55 |
+
df = fetch_data()
|
56 |
+
df = preprocess_data(df)
|
57 |
+
df = engineer_features(df)
|
58 |
+
|
59 |
+
# Train the model
|
60 |
+
model = train_model(df)
|
61 |
+
|
62 |
+
# Run the Flask app
|
63 |
+
app.run(debug=True, host='0.0.0.0', port=5000)
|