Spaces:
Sleeping
Delete app.py
Browse files"""
This Program is intended to provide a glimpse into daily NBA player projections from the app Prize-Picks and conduct a
statistical analysis into each line to identify potential value spots and different angles and trends from which to
justify the selection.
Author: Khizr Ali [email protected]
Created: March 6th, 2022
"""
# Imports
import math # Using floor method to get odds for above line
import sys # used to exit the program
import time # Using sleep() between thread requests
from datetime import date, datetime
import pandas as pd # Using DataFrames to store and manipulate data
import requests # Using GET to load data from some API
import unidecode # Decode the player names to remove accents
from bs4 import BeautifulSoup # Needed in get_player_position_list()
from scipy.stats import poisson # using poisson odds as one metric
from nba_api.stats.static import players # a list of players
from nba_api.stats.endpoints import playergamelogs, leaguegamelog # methods from nba-api to get data
from selenium import webdriver # Needed in get_dvp_ranking()
from selenium.webdriver.support.ui import Select # Needed in get_dvp_ranking()
from selenium.webdriver.common.by import By # Needed in get_dvp_ranking()
from selenium.webdriver.chrome.options import Options # Needed in get_dvp_ranking()
from selenium.webdriver.chrome.service import Service # Needed in get_dvp_ranking()
from webdriver_manager.chrome import ChromeDriverManager # Needed in get_dvp_ranking()
# Modules
# Get the Prizepicks Projections (Starting Data)
# Method is GOOD
def get_prizepicks_projections():
""" Returns a DataFrame of the PrizePicks Projections
Parameters:
-----------
Returns
---------
df: <pandas.DataFrame>
A DataFrame of the player's projection data
"""
# URL of the Prize Picks Projections page
url = 'https://partner-api.prizepicks.com/projections?single_stat=True&league_id=7&per_page=1000'
resp = requests.get(url).json()
if len(resp['data']) != 0:
# Normalizes the JSON File into a Data Frame
data = pd.json_normalize(resp['data'], max_level=3)
included = pd.json_normalize(resp['included'], max_level=3)
inc_cop = included[included['type'] == 'new_player'].copy().dropna(axis=1)
# Joins on the 'id' to add the player name to the projections
data = pd.merge(data, inc_cop,
how='left',
left_on=['relationships.new_player.data.id', 'relationships.new_player.data.type'],
right_on=['id', 'type'],
suffixes=('', '_new_player'))
# Return the data with necessary columns
data = data.rename(
columns={'attributes.name': 'name', 'attributes.line_score': 'line_score',
'attributes.stat_type': 'stat_type', 'attributes.updated_at': 'updated_at',
'attributes.description': 'opponent', 'attributes.start_time': 'start_time',
'attributes.is_promo': 'is_promo', 'attributes.position': 'position', 'attributes.team': 'team',
'attributes.team_name': 'team_name', 'attributes.market': 'market'})
return data[['id', 'name', 'line_score', 'stat_type', 'updated_at',
'opponent', 'start_time', 'is_promo', 'position',
'team', 'team_name', 'market']]
else:
print('There Are Currently no NBA Lines Available.')
sys.exit()
# Get the DVP Rankings (Starting Data)
# Method is GOOD
def get_dvp_rankings():
""" Returns a pandas.DataFrame of the NBA DVP Rankings from the last 30 days
Parameters:
-----------
Returns
---------
dvp_list: <pandas.DataFrame>
A DataFrame of each team dvp and its position
"""
chrome_options = Options()
chrome_options.add_argument("--headless")
s = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=s, options=chrome_options)
driver.get('https://hashtagbasketball.com/nba-defense-vs-position')
select = Select(driver.find_element(By.NAME, 'ctl00$ContentPlaceHolder1$DDDURATION'))
select.select_by_value("30")
time.sleep(.500)
table = driver.find_element(By.ID, 'ContentPlaceHolder1_GridView1').get_attribute('outerHTML')
dvp_table = pd.read_html(table)[0]
dvp_table = dvp_table.rename(
columns={'Sort: Team': 'Team', 'Sort: Position': 'Position', 'Sort: PTS': 'PTS', 'Sort: FG%': 'FG%',
'Sort: FT%': 'FT%', 'Sort: 3PM': '3PM', 'Sort: REB': 'REB', 'Sort: AST': 'AST', 'Sort: STL': 'STL',
'Sort: BLK': 'BLK', 'Sort: TO': 'TO'})
dvp_table['Team'] = dvp_table['Team'].str[:3]
dvp_table['PTS'] = dvp_table['PTS'].str[:4]
dvp_table['FG%'] = dvp_table['FG%'].str[:4]
dvp_table['FT%'] = dvp_table['FT%'].str[:4]
dvp_table['3PM'] = dvp_table['3PM'].str[:3]
dvp_table['REB'] = dvp_table['REB'].str[:-3]
dvp_table['AST'] = dvp_table['AST'].str[:-3]
dvp_table['STL'] = dvp_table['STL'].str[:3]
dvp_table['BLK'] = dvp_table['BLK'].str[:3]
dvp_table['TO'] = dvp_table['TO'].str[:3]
dvp_table['PTS'] = pd.to_numeric(dvp_table['PTS'])
dvp_table['FG%'] = pd.to_numeric(dvp_table['FG%'])
dvp_table['FT%'] = pd.to_numeric(dvp_table['FT%'])
dvp_table['3PM'] = pd.to_numeric(dvp_table['3PM'])
dvp_table['REB'] = pd.to_numeric(dvp_table['REB'])
dvp_table['AST'] = pd.to_numeric(dvp_table['AST'])
dvp_table['STL'] = pd.to_numeric(dvp_table['STL'])
dvp_table['BLK'] = pd.to_numeric(dvp_table['BLK'])
dvp_table['TO'] = pd.to_numeric(dvp_table['TO'])
driver.close()
return dvp_table
# Get a list of players and their position (Starting Data)
# Take a look at .replace() method issuing a warning
def get_player_position_list():
""" Returns a pandas.DataFrame of the NBA DVP Rankings from the last 30 days
Parameters:
-----------
Returns
---------
player_info_list: <list>
A list of players information including their position
"""
url = 'https://www.basketball-reference.com/leagues/NBA_2022_per_game.html'
r = requests.get(url)
r_html = r.text
soup = BeautifulSoup(r_html, 'html.parser')
table = soup.find_all(class_="full_table")
""" Extracting List of column names"""
head = soup.find(class_="thead")
column_names_raw = [head.text for _ in head][0]
column_names_polished = column_names_raw.replace("\n", ",").split(",")[2:-1]
"""Extracting full list of player_data"""
players_list = []
for i in range(len(table)):
player_ = []
for td in table[i].find_all("td"):
player_.append(unidecode.unidecode(td.text))
players_list.append(player_)
player_info_list = pd.DataFrame(players_list, columns=column_names_polished).set_index("Player")
# cleaning the player's name from occasional special characters
# player_info_list.index = player_info_list.index.str.encode('utf-8')
player_info_list.index = player_info_list.index.str.replace('*', '', regex=True)
return player_info_list
# Get a log of the last 10 games of all players listed in projections (Starting Data) (PrizePicks Projections Required)
# Look into changing the data to be streamlined and per player instead of all together
def get_game_logs(list_of_player_names):
""" Returns Two Lists. 1. List of Player Names 2. list of pandas.DataFrame containing logs of the last 10 games
Parameters:
-----------
list_of_projections: <pandas.DataFrame>
A DataFrame containing the Prize Picks Projections
Returns
---------
player_names: <List>
A List of the player's names
game_logs: <List>
A List of type pandas.DataFrame where each index contains the logs of the last 10 games played
"""
player_names = []
no_logs = []
game_logs = []
print('GETTING GAME LOGS')
for name in list_of_player_names:
if name not in player_names:
player = players.find_players_by_full_name(name)[0]
if player['is_active']:
player_id = str(player['id'])
player_logs = playergamelogs.PlayerGameLogs(date_from_nullable='10/31/2021',
player_id_nullable=player_id,
season_nullable='2021-22',
last_n_games_nullable=10).get_data_frames()[0]
player_names.append(name)
player_logs['ID'] = player_id
game_logs.append(player_logs)
time.sleep(.700)
print(name, ' added to logs')
else:
no_logs.append(name)
game_logs = pd.concat(game_logs, axis=0)
print('FINISHED ALL ELIGIBLE GAME LOGS', no_logs)
return game_logs, no_logs
def get_player_position(position_list, name):
""" Returns Two Lists. 1. List of Player Names 2. list of pandas.DataFrame containing logs of the last 10 games
Parameters:
-----------
list_of_projections: <pandas.DataFrame>
A DataFrame containing the Prize Picks Projections
Returns
---------
player_names: <List>
A List of the player's names
game_logs: <List>
A List of type pandas.DataFrame where each index contains the logs of the last 10 games played
"""
if name == 'Robert Williams III':
name = 'Robert Williams'
return position_list[position_list.index == name]['Pos'][0]
# Get the Poisson Odds of the player going OVER their projected total given previous 10 performances
# Method is GOOD
def get_poisson_odds(game_log, prop_type, line_score):
""" Returns a Value of the PrizePicks Projection Poisson odds to go over the suggested line_score
Parameters:
-----------
game_log: <pandas.DataFrame>
A DataFrame containing the players l10 Game Logs
prop_type: <String>
A string containing the type of prop it is eg. Points, Rebounds, Assists, etc.
line_score: <float>
A float valu
@@ -1,565 +0,0 @@
|
|
1 |
-
import pandas
|
2 |
-
import csv
|
3 |
-
import os
|
4 |
-
|
5 |
-
def prizepicks_6_legs_flex(wager, odds):
|
6 |
-
#calculate EV
|
7 |
-
value_win_6 = wager * 24
|
8 |
-
odds_win_6 = 1
|
9 |
-
for i in range(len(odds)):
|
10 |
-
odds_win_6 *= odds[i]
|
11 |
-
value_win_6 *= odds_win_6
|
12 |
-
|
13 |
-
value_win_5 = wager
|
14 |
-
odds_win_5 = 0
|
15 |
-
for i in range(len(odds)):
|
16 |
-
temp = 1 - odds[i]
|
17 |
-
for n in range(len(odds)):
|
18 |
-
if n == i:
|
19 |
-
continue
|
20 |
-
temp *= odds[n]
|
21 |
-
odds_win_5 += temp
|
22 |
-
value_win_5 *= odds_win_5
|
23 |
-
|
24 |
-
value_win_4 = 0.6 * wager * -1
|
25 |
-
odds_win_4 = 0
|
26 |
-
for i in range(len(odds)):
|
27 |
-
temp_1 = 1 - odds[i]
|
28 |
-
for n in range(len(odds)):
|
29 |
-
if n <= i:
|
30 |
-
continue
|
31 |
-
temp_2 = (1 - odds[n]) * temp_1
|
32 |
-
for j in range(len(odds)):
|
33 |
-
if j == i or j == n:
|
34 |
-
continue
|
35 |
-
temp_2 *= odds[j]
|
36 |
-
odds_win_4 += temp_2
|
37 |
-
value_win_4 *= odds_win_4
|
38 |
-
|
39 |
-
value_win_3 = wager * -1
|
40 |
-
odds_win_3 = 0
|
41 |
-
for i in range(len(odds)):
|
42 |
-
temp_1 = 1 - odds[i]
|
43 |
-
for n in range(len(odds)):
|
44 |
-
if n <= i:
|
45 |
-
continue
|
46 |
-
temp_2 = (1 - odds[n]) * temp_1
|
47 |
-
for j in range(len(odds)):
|
48 |
-
if j <= n:
|
49 |
-
continue
|
50 |
-
temp_3 = (1 - odds[j]) * temp_2
|
51 |
-
for k in range(len(odds)):
|
52 |
-
if k == i or k == n or k == j:
|
53 |
-
continue
|
54 |
-
temp_3 *= odds[k]
|
55 |
-
odds_win_3 += temp_3
|
56 |
-
value_win_3 *= odds_win_3
|
57 |
-
|
58 |
-
odds_inverse = []
|
59 |
-
for i in range(len(odds)):
|
60 |
-
odds_inverse.append(1 - odds[i])
|
61 |
-
|
62 |
-
value_win_2 = wager * -1
|
63 |
-
odds_win_2 = 0
|
64 |
-
for i in range(len(odds_inverse)):
|
65 |
-
temp_1 = 1 - odds_inverse[i]
|
66 |
-
for n in range(len(odds_inverse)):
|
67 |
-
if n <= i:
|
68 |
-
continue
|
69 |
-
temp_2 = (1 - odds_inverse[n]) * temp_1
|
70 |
-
for j in range(len(odds_inverse)):
|
71 |
-
if j == i or j == n:
|
72 |
-
continue
|
73 |
-
temp_2 *= odds_inverse[j]
|
74 |
-
odds_win_2 += temp_2
|
75 |
-
value_win_2 *= odds_win_2
|
76 |
-
|
77 |
-
value_win_1 = wager * -1
|
78 |
-
odds_win_1 = 0
|
79 |
-
for i in range(len(odds_inverse)):
|
80 |
-
temp = 1 - odds_inverse[i]
|
81 |
-
for n in range(len(odds_inverse)):
|
82 |
-
if n == i:
|
83 |
-
continue
|
84 |
-
temp *= odds_inverse[n]
|
85 |
-
odds_win_1 += temp
|
86 |
-
value_win_1 *= odds_win_1
|
87 |
-
|
88 |
-
value_win_0 = wager * -1
|
89 |
-
odds_win_0 = 1
|
90 |
-
for i in range(len(odds_inverse)):
|
91 |
-
odds_win_0 *= odds_inverse[i]
|
92 |
-
value_win_0 *= odds_win_0
|
93 |
-
|
94 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3 + value_win_4 + value_win_5 + value_win_6
|
95 |
-
print("$" + str(wager) + " 6-legs flex play with implied odds: " + str(odds))
|
96 |
-
print("Chance to win 6/6 (PnL $" + str(wager * 24) + "): " + str(odds_win_6))
|
97 |
-
print("Chance to win 5/6 (PnL $" + str(wager) + "): " + str(odds_win_5))
|
98 |
-
print("Chance to win 4/6 (PnL $" + str(wager * -0.6) + "): " + str(odds_win_4))
|
99 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_3 + odds_win_2 + odds_win_1 + odds_win_0))
|
100 |
-
print("Expected PnL: $" + str(ev))
|
101 |
-
print()
|
102 |
-
return ev, "6-legs flex"
|
103 |
-
|
104 |
-
def prizepicks_5_legs_flex(wager, odds):
|
105 |
-
#calculate EV
|
106 |
-
value_win_5 = wager * 9
|
107 |
-
odds_win_5 = 1
|
108 |
-
for i in range(len(odds)):
|
109 |
-
odds_win_5 *= odds[i]
|
110 |
-
value_win_5 *= odds_win_5
|
111 |
-
|
112 |
-
value_win_4 = wager
|
113 |
-
odds_win_4 = 0
|
114 |
-
for i in range(len(odds)):
|
115 |
-
temp = 1 - odds[i]
|
116 |
-
for n in range(len(odds)):
|
117 |
-
if n == i:
|
118 |
-
continue
|
119 |
-
temp *= odds[n]
|
120 |
-
odds_win_4 += temp
|
121 |
-
value_win_4 *= odds_win_4
|
122 |
-
|
123 |
-
value_win_3 = 0.6 * wager * -1
|
124 |
-
odds_win_3 = 0
|
125 |
-
for i in range(len(odds)):
|
126 |
-
temp_1 = 1 - odds[i]
|
127 |
-
for n in range(len(odds)):
|
128 |
-
if n <= i:
|
129 |
-
continue
|
130 |
-
temp_2 = (1 - odds[n]) * temp_1
|
131 |
-
for j in range(len(odds)):
|
132 |
-
if j == i or j == n:
|
133 |
-
continue
|
134 |
-
temp_2 *= odds[j]
|
135 |
-
odds_win_3 += temp_2
|
136 |
-
value_win_3 *= odds_win_3
|
137 |
-
|
138 |
-
odds_inverse = []
|
139 |
-
for i in range(len(odds)):
|
140 |
-
odds_inverse.append(1 - odds[i])
|
141 |
-
|
142 |
-
value_win_2 = wager * -1
|
143 |
-
odds_win_2 = 0
|
144 |
-
for i in range(len(odds_inverse)):
|
145 |
-
temp_1 = 1 - odds_inverse[i]
|
146 |
-
for n in range(len(odds_inverse)):
|
147 |
-
if n <= i:
|
148 |
-
continue
|
149 |
-
temp_2 = (1 - odds_inverse[n]) * temp_1
|
150 |
-
for j in range(len(odds_inverse)):
|
151 |
-
if j == i or j == n:
|
152 |
-
continue
|
153 |
-
temp_2 *= odds_inverse[j]
|
154 |
-
odds_win_2 += temp_2
|
155 |
-
value_win_2 *= odds_win_2
|
156 |
-
|
157 |
-
value_win_1 = wager * -1
|
158 |
-
odds_win_1 = 0
|
159 |
-
for i in range(len(odds_inverse)):
|
160 |
-
temp = 1 - odds_inverse[i]
|
161 |
-
for n in range(len(odds_inverse)):
|
162 |
-
if n == i:
|
163 |
-
continue
|
164 |
-
temp *= odds_inverse[n]
|
165 |
-
odds_win_1 += temp
|
166 |
-
value_win_1 *= odds_win_1
|
167 |
-
|
168 |
-
value_win_0 = wager * -1
|
169 |
-
odds_win_0 = 1
|
170 |
-
for i in range(len(odds_inverse)):
|
171 |
-
odds_win_0 *= odds_inverse[i]
|
172 |
-
value_win_0 *= odds_win_0
|
173 |
-
|
174 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3 + value_win_4 + value_win_5
|
175 |
-
print("$" + str(wager) + " 5-legs flex play with implied odds: " + str(odds))
|
176 |
-
print("Chance to win 5/5 (PnL $" + str(wager * 9) + "): " + str(odds_win_5))
|
177 |
-
print("Chance to win 4/5 (PnL $" + str(wager) + "): " + str(odds_win_4))
|
178 |
-
print("Chance to win 3/5 (PnL $" + str(wager * -0.6) + "): " + str(odds_win_3))
|
179 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_2 + odds_win_1 + odds_win_0))
|
180 |
-
print("Expected PnL: $" + str(ev))
|
181 |
-
print()
|
182 |
-
return ev, "5-legs flex"
|
183 |
-
|
184 |
-
def prizepicks_4_legs_flex(wager, odds):
|
185 |
-
#calculate EV
|
186 |
-
value_win_4 = wager * 4
|
187 |
-
odds_win_4 = 1
|
188 |
-
for i in range(len(odds)):
|
189 |
-
odds_win_4 *= odds[i]
|
190 |
-
value_win_4 *= odds_win_4
|
191 |
-
|
192 |
-
value_win_3 = wager * 0.5
|
193 |
-
odds_win_3 = 0
|
194 |
-
for i in range(len(odds)):
|
195 |
-
temp = 1 - odds[i]
|
196 |
-
for n in range(len(odds)):
|
197 |
-
if n == i:
|
198 |
-
continue
|
199 |
-
temp *= odds[n]
|
200 |
-
odds_win_3 += temp
|
201 |
-
value_win_3 *= odds_win_3
|
202 |
-
|
203 |
-
value_win_2 = wager * -1
|
204 |
-
odds_win_2 = 0
|
205 |
-
for i in range(len(odds)):
|
206 |
-
temp_1 = 1 - odds[i]
|
207 |
-
for n in range(len(odds)):
|
208 |
-
if n <= i:
|
209 |
-
continue
|
210 |
-
temp_2 = (1 - odds[n]) * temp_1
|
211 |
-
for j in range(len(odds)):
|
212 |
-
if j == i or j == n:
|
213 |
-
continue
|
214 |
-
temp_2 *= odds[j]
|
215 |
-
odds_win_2 += temp_2
|
216 |
-
value_win_2 *= odds_win_2
|
217 |
-
|
218 |
-
odds_inverse = []
|
219 |
-
for i in range(len(odds)):
|
220 |
-
odds_inverse.append(1 - odds[i])
|
221 |
-
|
222 |
-
value_win_1 = wager * -1
|
223 |
-
odds_win_1 = 0
|
224 |
-
for i in range(len(odds_inverse)):
|
225 |
-
temp = 1 - odds_inverse[i]
|
226 |
-
for n in range(len(odds_inverse)):
|
227 |
-
if n == i:
|
228 |
-
continue
|
229 |
-
temp *= odds_inverse[n]
|
230 |
-
odds_win_1 += temp
|
231 |
-
value_win_1 *= odds_win_1
|
232 |
-
|
233 |
-
value_win_0 = wager * -1
|
234 |
-
odds_win_0 = 1
|
235 |
-
for i in range(len(odds_inverse)):
|
236 |
-
odds_win_0 *= odds_inverse[i]
|
237 |
-
value_win_0 *= odds_win_0
|
238 |
-
|
239 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3 + value_win_4
|
240 |
-
print("$" + str(wager) + " 4-legs flex play with implied odds: " + str(odds))
|
241 |
-
print("Chance to win 4/4 (PnL $" + str(wager * 4) + "): " + str(odds_win_4))
|
242 |
-
print("Chance to win 3/4 (PnL $" + str(wager * 0.5) + "): " + str(odds_win_3))
|
243 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_2 + odds_win_1 + odds_win_0))
|
244 |
-
print("Expected PnL: $" + str(ev))
|
245 |
-
print()
|
246 |
-
return ev, "4-legs flex"
|
247 |
-
|
248 |
-
def prizepicks_4_legs_power(wager, odds):
|
249 |
-
#calculate EV
|
250 |
-
value_win_4 = wager * 9
|
251 |
-
odds_win_4 = 1
|
252 |
-
for i in range(len(odds)):
|
253 |
-
odds_win_4 *= odds[i]
|
254 |
-
value_win_4 *= odds_win_4
|
255 |
-
|
256 |
-
value_win_3 = wager * -1
|
257 |
-
odds_win_3 = 0
|
258 |
-
for i in range(len(odds)):
|
259 |
-
temp = 1 - odds[i]
|
260 |
-
for n in range(len(odds)):
|
261 |
-
if n == i:
|
262 |
-
continue
|
263 |
-
temp *= odds[n]
|
264 |
-
odds_win_3 += temp
|
265 |
-
value_win_3 *= odds_win_3
|
266 |
-
|
267 |
-
value_win_2 = wager * -1
|
268 |
-
odds_win_2 = 0
|
269 |
-
for i in range(len(odds)):
|
270 |
-
temp_1 = 1 - odds[i]
|
271 |
-
for n in range(len(odds)):
|
272 |
-
if n <= i:
|
273 |
-
continue
|
274 |
-
temp_2 = (1 - odds[n]) * temp_1
|
275 |
-
for j in range(len(odds)):
|
276 |
-
if j == i or j == n:
|
277 |
-
continue
|
278 |
-
temp_2 *= odds[j]
|
279 |
-
odds_win_2 += temp_2
|
280 |
-
value_win_2 *= odds_win_2
|
281 |
-
|
282 |
-
odds_inverse = []
|
283 |
-
for i in range(len(odds)):
|
284 |
-
odds_inverse.append(1 - odds[i])
|
285 |
-
|
286 |
-
value_win_1 = wager * -1
|
287 |
-
odds_win_1 = 0
|
288 |
-
for i in range(len(odds_inverse)):
|
289 |
-
temp = 1 - odds_inverse[i]
|
290 |
-
for n in range(len(odds_inverse)):
|
291 |
-
if n == i:
|
292 |
-
continue
|
293 |
-
temp *= odds_inverse[n]
|
294 |
-
odds_win_1 += temp
|
295 |
-
value_win_1 *= odds_win_1
|
296 |
-
|
297 |
-
value_win_0 = wager * -1
|
298 |
-
odds_win_0 = 1
|
299 |
-
for i in range(len(odds_inverse)):
|
300 |
-
odds_win_0 *= odds_inverse[i]
|
301 |
-
value_win_0 *= odds_win_0
|
302 |
-
|
303 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3 + value_win_4
|
304 |
-
print("$" + str(wager) + " 4-legs power play with implied odds: " + str(odds))
|
305 |
-
print("Chance to win 4/4 (PnL $" + str(wager * 9) + "): " + str(odds_win_4))
|
306 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_3 + odds_win_2 + odds_win_1 + odds_win_0))
|
307 |
-
print("Expected PnL: $" + str(ev))
|
308 |
-
print()
|
309 |
-
return ev, "4-legs power"
|
310 |
-
|
311 |
-
def prizepicks_3_legs_flex(wager, odds):
|
312 |
-
#calculate EV
|
313 |
-
value_win_3 = wager * 1.25
|
314 |
-
odds_win_3 = 1
|
315 |
-
for i in range(len(odds)):
|
316 |
-
odds_win_3 *= odds[i]
|
317 |
-
value_win_3 *= odds_win_3
|
318 |
-
|
319 |
-
value_win_2 = wager * 0.25
|
320 |
-
odds_win_2 = 0
|
321 |
-
for i in range(len(odds)):
|
322 |
-
temp = 1 - odds[i]
|
323 |
-
for n in range(len(odds)):
|
324 |
-
if n == i:
|
325 |
-
continue
|
326 |
-
temp *= odds[n]
|
327 |
-
odds_win_2 += temp
|
328 |
-
value_win_2 *= odds_win_2
|
329 |
-
|
330 |
-
odds_inverse = []
|
331 |
-
for i in range(len(odds)):
|
332 |
-
odds_inverse.append(1 - odds[i])
|
333 |
-
|
334 |
-
value_win_1 = wager * -1
|
335 |
-
odds_win_1 = 0
|
336 |
-
for i in range(len(odds_inverse)):
|
337 |
-
temp = 1 - odds_inverse[i]
|
338 |
-
for n in range(len(odds_inverse)):
|
339 |
-
if n == i:
|
340 |
-
continue
|
341 |
-
temp *= odds_inverse[n]
|
342 |
-
odds_win_1 += temp
|
343 |
-
value_win_1 *= odds_win_1
|
344 |
-
|
345 |
-
value_win_0 = wager * -1
|
346 |
-
odds_win_0 = 1
|
347 |
-
for i in range(len(odds_inverse)):
|
348 |
-
odds_win_0 *= odds_inverse[i]
|
349 |
-
value_win_0 *= odds_win_0
|
350 |
-
|
351 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3
|
352 |
-
print("$" + str(wager) + " 3-legs flex play with implied odds: " + str(odds))
|
353 |
-
print("Chance to win 3/3 (PnL $" + str(wager * 1.25) + "): " + str(odds_win_3))
|
354 |
-
print("Chance to win 2/3 (PnL $" + str(wager * 0.25) + "): " + str(odds_win_2))
|
355 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_1 + odds_win_0))
|
356 |
-
print("Expected PnL: $" + str(ev))
|
357 |
-
print()
|
358 |
-
return ev, "3-legs flex"
|
359 |
-
|
360 |
-
def prizepicks_3_legs_power(wager, odds):
|
361 |
-
#calculate EV
|
362 |
-
value_win_3 = wager * 4
|
363 |
-
odds_win_3 = 1
|
364 |
-
for i in range(len(odds)):
|
365 |
-
odds_win_3 *= odds[i]
|
366 |
-
value_win_3 *= odds_win_3
|
367 |
-
|
368 |
-
value_win_2 = wager * -1
|
369 |
-
odds_win_2 = 0
|
370 |
-
for i in range(len(odds)):
|
371 |
-
temp = 1 - odds[i]
|
372 |
-
for n in range(len(odds)):
|
373 |
-
if n == i:
|
374 |
-
continue
|
375 |
-
temp *= odds[n]
|
376 |
-
odds_win_2 += temp
|
377 |
-
value_win_2 *= odds_win_2
|
378 |
-
|
379 |
-
odds_inverse = []
|
380 |
-
for i in range(len(odds)):
|
381 |
-
odds_inverse.append(1 - odds[i])
|
382 |
-
|
383 |
-
value_win_1 = wager * -1
|
384 |
-
odds_win_1 = 0
|
385 |
-
for i in range(len(odds_inverse)):
|
386 |
-
temp = 1 - odds_inverse[i]
|
387 |
-
for n in range(len(odds_inverse)):
|
388 |
-
if n == i:
|
389 |
-
continue
|
390 |
-
temp *= odds_inverse[n]
|
391 |
-
odds_win_1 += temp
|
392 |
-
value_win_1 *= odds_win_1
|
393 |
-
|
394 |
-
value_win_0 = wager * -1
|
395 |
-
odds_win_0 = 1
|
396 |
-
for i in range(len(odds_inverse)):
|
397 |
-
odds_win_0 *= odds_inverse[i]
|
398 |
-
value_win_0 *= odds_win_0
|
399 |
-
|
400 |
-
ev = value_win_0 + value_win_1 + value_win_2 + value_win_3
|
401 |
-
print("$" + str(wager) + " 3-legs power play with implied odds: " + str(odds))
|
402 |
-
print("Chance to win 3/3 (PnL $" + str(wager * 4) + "): " + str(odds_win_3))
|
403 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_2 + odds_win_1 + odds_win_0))
|
404 |
-
print("Expected PnL: $" + str(ev))
|
405 |
-
print()
|
406 |
-
return ev, "3-legs power"
|
407 |
-
|
408 |
-
def prizepicks_2_legs_power(wager, odds):
|
409 |
-
#calculate EV
|
410 |
-
value_win_2 = wager * 2
|
411 |
-
odds_win_2 = 1
|
412 |
-
for i in range(len(odds)):
|
413 |
-
odds_win_2 *= odds[i]
|
414 |
-
value_win_2 *= odds_win_2
|
415 |
-
|
416 |
-
value_win_1 = wager * -1
|
417 |
-
odds_win_1 = 0
|
418 |
-
for i in range(len(odds)):
|
419 |
-
temp = 1 - odds[i]
|
420 |
-
for n in range(len(odds)):
|
421 |
-
if n == i:
|
422 |
-
continue
|
423 |
-
temp *= odds[n]
|
424 |
-
odds_win_1 += temp
|
425 |
-
value_win_1 *= odds_win_1
|
426 |
-
|
427 |
-
odds_inverse = []
|
428 |
-
for i in range(len(odds)):
|
429 |
-
odds_inverse.append(1 - odds[i])
|
430 |
-
|
431 |
-
value_win_0 = wager * -1
|
432 |
-
odds_win_0 = 1
|
433 |
-
for i in range(len(odds_inverse)):
|
434 |
-
odds_win_0 *= odds_inverse[i]
|
435 |
-
value_win_0 *= odds_win_0
|
436 |
-
|
437 |
-
ev = value_win_0 + value_win_1 + value_win_2
|
438 |
-
print("$" + str(wager) + " 2-legs power play with implied odds: " + str(odds))
|
439 |
-
print("Chance to win 2/2 (PnL $" + str(wager * 2) + "): " + str(odds_win_2))
|
440 |
-
print("Chance to lose (PnL $" + str(wager * -1) + "): " + str(odds_win_1 + odds_win_0))
|
441 |
-
print("Expected PnL: $" + str(ev))
|
442 |
-
print()
|
443 |
-
return ev, "2-legs power"
|
444 |
-
|
445 |
-
def sort_plays(plays):
|
446 |
-
plays.sort(key = lambda x: x[0], reverse=True)
|
447 |
-
return plays
|
448 |
-
|
449 |
-
def main():
|
450 |
-
input_fname = "All-Sports_PrizePicks Optimizer.csv"
|
451 |
-
output_fname = "dgf.csv"
|
452 |
-
|
453 |
-
with open(input_fname, newline='') as inFile, open(output_fname, 'w', newline='') as outFile:
|
454 |
-
r = csv.reader(inFile)
|
455 |
-
w = csv.writer(outFile)
|
456 |
-
|
457 |
-
next(r, None)
|
458 |
-
w.writerow(['First Name', 'Last Name', 'Sport', 'Team', 'Over/Under', 'Prop', 'PrizePicks Line',
|
459 |
-
'Sportsbook Line', 'DGF', 'Pinnacle', 'Fanduel', 'DraftKings', 'Barstool', 'MGM', 'Caesars',
|
460 |
-
'BetOnline', 'Bovada', 'Bet365', 'FoxBet', 'Odds to hit'])
|
461 |
-
|
462 |
-
for row in r:
|
463 |
-
w.writerow(row)
|
464 |
-
|
465 |
-
data = pandas.read_csv('dgf.csv')
|
466 |
-
top_lines = data.iloc [[0,1,2,3,4,5]]
|
467 |
-
print(top_lines)
|
468 |
-
odds = top_lines['Odds to hit'].tolist()
|
469 |
-
|
470 |
-
plays_6 = top_lines.iloc [[0,1,2,3,4,5], [0,1,4,5,6]]
|
471 |
-
plays_5 = top_lines.iloc [[0,1,2,3,4], [0,1,4,5,6]]
|
472 |
-
plays_4 = top_lines.iloc [[0,1,2,3], [0,1,4,5,6]]
|
473 |
-
plays_3 = top_lines.iloc [[0,1,2], [0,1,4,5,6]]
|
474 |
-
plays_2 = top_lines.iloc [[0,1], [0,1,4,5,6]]
|
475 |
-
|
476 |
-
for i in range(len(odds)):
|
477 |
-
odds[i] = odds[i]/100
|
478 |
-
|
479 |
-
wager = 100
|
480 |
-
plays = []
|
481 |
-
pp_6_legs_flex = prizepicks_6_legs_flex(wager, odds)
|
482 |
-
pp_6_legs_flex_ev = pp_6_legs_flex[0]
|
483 |
-
plays.append(pp_6_legs_flex)
|
484 |
-
|
485 |
-
pp_5_legs_flex = prizepicks_5_legs_flex(wager, odds[:5])
|
486 |
-
pp_5_legs_flex_ev = pp_5_legs_flex[0]
|
487 |
-
plays.append(pp_5_legs_flex)
|
488 |
-
|
489 |
-
pp_4_legs_flex = prizepicks_4_legs_flex(wager, odds[:4])
|
490 |
-
pp_4_legs_flex_ev = pp_4_legs_flex[0]
|
491 |
-
plays.append(pp_4_legs_flex)
|
492 |
-
|
493 |
-
pp_4_legs_power = prizepicks_4_legs_power(wager, odds[:4])
|
494 |
-
pp_4_legs_power_ev = pp_4_legs_power[0]
|
495 |
-
plays.append(pp_4_legs_power)
|
496 |
-
|
497 |
-
pp_3_legs_flex = prizepicks_3_legs_flex(wager, odds[:3])
|
498 |
-
pp_3_legs_flex_ev = pp_3_legs_flex[0]
|
499 |
-
plays.append(pp_3_legs_flex)
|
500 |
-
|
501 |
-
pp_3_legs_power = prizepicks_3_legs_power(wager, odds[:3])
|
502 |
-
pp_3_legs_power_ev = pp_3_legs_power[0]
|
503 |
-
plays.append(pp_3_legs_power)
|
504 |
-
|
505 |
-
pp_2_legs_power = prizepicks_2_legs_power(wager, odds[:2])
|
506 |
-
pp_2_legs_power_ev = pp_2_legs_power[0]
|
507 |
-
plays.append(pp_2_legs_power)
|
508 |
-
|
509 |
-
outputs = []
|
510 |
-
|
511 |
-
output_6_flex = ""
|
512 |
-
output_6_flex += "$" + str(wager) + " 6-legs flex play expected PnL: $" + str(float("{:.2f}".format(pp_6_legs_flex_ev))) + "\n"
|
513 |
-
output_6_flex += str(plays_6)
|
514 |
-
output_6_flex += "\n"
|
515 |
-
tup_6_flex = (pp_6_legs_flex_ev, output_6_flex)
|
516 |
-
outputs.append(tup_6_flex)
|
517 |
-
|
518 |
-
output_5_flex = ""
|
519 |
-
output_5_flex += "$" + str(wager) + " 5-legs flex play expected PnL: $" + str(float("{:.2f}".format(pp_5_legs_flex_ev))) + "\n"
|
520 |
-
output_5_flex += str(plays_5)
|
521 |
-
output_5_flex += "\n"
|
522 |
-
tup_5_flex = (pp_5_legs_flex_ev, output_5_flex)
|
523 |
-
outputs.append(tup_5_flex)
|
524 |
-
|
525 |
-
output_4_flex = ""
|
526 |
-
output_4_flex += "$" + str(wager) + " 4-legs flex play expected PnL: $" + str(float("{:.2f}".format(pp_4_legs_flex_ev))) + "\n"
|
527 |
-
output_4_flex += str(plays_4)
|
528 |
-
output_4_flex += "\n"
|
529 |
-
tup_4_flex = (pp_4_legs_flex_ev, output_4_flex)
|
530 |
-
outputs.append(tup_4_flex)
|
531 |
-
|
532 |
-
output_4_power = ""
|
533 |
-
output_4_power += "$" + str(wager) + " 4-legs power play expected PnL: $" + str(float("{:.2f}".format(pp_4_legs_power_ev))) + "\n"
|
534 |
-
output_4_power += str(plays_4)
|
535 |
-
output_4_power += "\n"
|
536 |
-
tup_4_power = (pp_4_legs_power_ev, output_4_power)
|
537 |
-
outputs.append(tup_4_power)
|
538 |
-
|
539 |
-
output_3_flex = ""
|
540 |
-
output_3_flex += "$" + str(wager) + " 3-legs flex play expected PnL: $" + str(float("{:.2f}".format(pp_3_legs_flex_ev))) + "\n"
|
541 |
-
output_3_flex += str(plays_3)
|
542 |
-
output_3_flex += "\n"
|
543 |
-
tup_3_flex = (pp_3_legs_flex_ev, output_3_flex)
|
544 |
-
outputs.append(tup_3_flex)
|
545 |
-
|
546 |
-
output_3_power = ""
|
547 |
-
output_3_power += "$" + str(wager) + " 3-legs power play expected PnL: $" + str(float("{:.2f}".format(pp_3_legs_power_ev))) + "\n"
|
548 |
-
output_3_power += str(plays_3)
|
549 |
-
output_3_power += "\n"
|
550 |
-
tup_3_power = (pp_3_legs_power_ev, output_3_power)
|
551 |
-
outputs.append(tup_3_power)
|
552 |
-
|
553 |
-
output_2_power = ""
|
554 |
-
output_2_power += "$" + str(wager) + " 2-legs power play expected PnL: $" + str(float("{:.2f}".format(pp_2_legs_power_ev))) + "\n"
|
555 |
-
output_2_power += str(plays_2)
|
556 |
-
output_2_power += "\n"
|
557 |
-
tup_2_power = (pp_2_legs_power_ev, output_2_power)
|
558 |
-
outputs.append(tup_2_power)
|
559 |
-
|
560 |
-
sort_plays(outputs)
|
561 |
-
for i in range(len(outputs)):
|
562 |
-
print(outputs[i][1])
|
563 |
-
|
564 |
-
if __name__ == "__main__":
|
565 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|