face-swap-docker1 / plugins /codeformer_app_cv2.py
pknez's picture
Upload 913 files
0c87db7
raw
history blame
10.7 kB
"""
Modified version from codeformer-pip project
S-Lab License 1.0
Copyright 2022 S-Lab
https://github.com/kadirnar/codeformer-pip/blob/main/LICENSE
"""
import os
import cv2
import torch
from codeformer.facelib.detection import init_detection_model
from codeformer.facelib.parsing import init_parsing_model
from torchvision.transforms.functional import normalize
from codeformer.basicsr.archs.rrdbnet_arch import RRDBNet
from codeformer.basicsr.utils import img2tensor, imwrite, tensor2img
from codeformer.basicsr.utils.download_util import load_file_from_url
from codeformer.basicsr.utils.realesrgan_utils import RealESRGANer
from codeformer.basicsr.utils.registry import ARCH_REGISTRY
from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper
from codeformer.facelib.utils.misc import is_gray
import threading
from plugins.codeformer_face_helper_cv2 import FaceRestoreHelperOptimized
THREAD_LOCK_FACE_HELPER = threading.Lock()
THREAD_LOCK_FACE_HELPER_CREATE = threading.Lock()
THREAD_LOCK_FACE_HELPER_PROCERSSING = threading.Lock()
THREAD_LOCK_CODEFORMER_NET = threading.Lock()
THREAD_LOCK_CODEFORMER_NET_CREATE = threading.Lock()
THREAD_LOCK_BGUPSAMPLER = threading.Lock()
pretrain_model_url = {
"codeformer": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth",
"detection": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"parsing": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth",
"realesrgan": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
}
# download weights
if not os.path.exists("models/CodeFormer/codeformer.pth"):
load_file_from_url(
url=pretrain_model_url["codeformer"], model_dir="models/CodeFormer/", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/facelib/detection_Resnet50_Final.pth"):
load_file_from_url(
url=pretrain_model_url["detection"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/facelib/parsing_parsenet.pth"):
load_file_from_url(
url=pretrain_model_url["parsing"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth"):
load_file_from_url(
url=pretrain_model_url["realesrgan"], model_dir="models/CodeFormer/realesrgan", progress=True, file_name=None
)
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
# set enhancer with RealESRGAN
def set_realesrgan():
half = True if torch.cuda.is_available() else False
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=half,
)
return upsampler
upsampler = set_realesrgan()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
codeformers_cache = []
def get_codeformer():
if len(codeformers_cache) > 0:
with THREAD_LOCK_CODEFORMER_NET:
if len(codeformers_cache) > 0:
return codeformers_cache.pop()
with THREAD_LOCK_CODEFORMER_NET_CREATE:
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
ckpt_path = "models/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()
return codeformer_net
def release_codeformer(codeformer):
with THREAD_LOCK_CODEFORMER_NET:
codeformers_cache.append(codeformer)
#os.makedirs("output", exist_ok=True)
# ------- face restore thread cache ----------
face_restore_helper_cache = []
detection_model = "retinaface_resnet50"
inited_face_restore_helper_nn = False
import time
def get_face_restore_helper(upscale):
global inited_face_restore_helper_nn
with THREAD_LOCK_FACE_HELPER:
face_helper = FaceRestoreHelperOptimized(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=device,
)
#return face_helper
if inited_face_restore_helper_nn:
while len(face_restore_helper_cache) == 0:
time.sleep(0.05)
face_detector, face_parse = face_restore_helper_cache.pop()
face_helper.face_detector = face_detector
face_helper.face_parse = face_parse
return face_helper
else:
inited_face_restore_helper_nn = True
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device)
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device)
return face_helper
def get_face_restore_helper2(upscale): # still not work well!!!
face_helper = FaceRestoreHelperOptimized(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=device,
)
#return face_helper
if len(face_restore_helper_cache) > 0:
with THREAD_LOCK_FACE_HELPER:
if len(face_restore_helper_cache) > 0:
face_detector, face_parse = face_restore_helper_cache.pop()
face_helper.face_detector = face_detector
face_helper.face_parse = face_parse
return face_helper
with THREAD_LOCK_FACE_HELPER_CREATE:
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device)
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device)
return face_helper
def release_face_restore_helper(face_helper):
#return
#with THREAD_LOCK_FACE_HELPER:
face_restore_helper_cache.append((face_helper.face_detector, face_helper.face_parse))
#pass
def inference_app(image, background_enhance, face_upsample, upscale, codeformer_fidelity, skip_if_no_face = False):
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
#print("Inp:", image, background_enhance, face_upsample, upscale, codeformer_fidelity)
if isinstance(image, str):
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
else:
img = image
#print("\timage size:", img.shape)
upscale = int(upscale) # convert type to int
if upscale > 4: # avoid memory exceeded due to too large upscale
upscale = 4
if upscale > 2 and max(img.shape[:2]) > 1000: # avoid memory exceeded due to too large img resolution
upscale = 2
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
upscale = 1
background_enhance = False
#face_upsample = False
face_helper = get_face_restore_helper(upscale)
bg_upsampler = upsampler if background_enhance else None
face_upsampler = upsampler if face_upsample else None
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=5)
if face_helper.is_gray:
print("\tgrayscale input: True")
face_helper.cropped_faces = [img]
else:
with THREAD_LOCK_FACE_HELPER_PROCERSSING:
face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
#print(f"\tdetect {num_det_faces} faces")
if num_det_faces == 0 and skip_if_no_face:
release_face_restore_helper(face_helper)
return img
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
codeformer_net = get_codeformer()
try:
with torch.no_grad():
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
except RuntimeError as error:
print(f"Failed inference for CodeFormer: {error}")
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
release_codeformer(codeformer_net)
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
with THREAD_LOCK_BGUPSAMPLER:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box)
if image.shape != restored_img.shape:
h, w, _ = image.shape
restored_img = cv2.resize(restored_img, (w, h), interpolation=cv2.INTER_LINEAR)
release_face_restore_helper(face_helper)
# save restored img
if isinstance(image, str):
save_path = f"output/out.png"
imwrite(restored_img, str(save_path))
return save_path
else:
return restored_img