Spaces:
Running
Running
File size: 8,007 Bytes
5a8c4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import shutil
import gradio as gr
# from cog import BasePredictor, Input, Path
import insightface
import onnxruntime
from insightface.app import FaceAnalysis
import cv2
import gfpgan
import tempfile
import time
import uuid
from typing import Any, Union
from loggers import logger, request_id as _request_id
import ssl
from datetime import datetime
import traceback
import torch
import os
import requests
import subprocess
import sys
from PIL import Image
import numpy as np
ssl._create_default_https_context = ssl._create_unverified_context
if sys.platform == 'darwin':
cache_file_dir = '/tmp/file'
else:
cache_file_dir = '/src/file'
os.makedirs(cache_file_dir, exist_ok=True)
def img_url_to_local_path(img_url, file_path=None):
filename = img_url.split('/')[-1]
max_count = 3
count = 0
if file_path is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=filename)
temp_file_name = temp_file.name
else:
temp_file_name = file_path
while True:
count += 1
try:
res = requests.get(img_url, timeout=60)
res.raise_for_status()
with open(temp_file_name, "wb") as f:
f.write(res.content)
return temp_file_name
except Exception as e:
logger.error(e)
if count >= max_count:
msg = f'request {max_count} time url: {img_url} failed, please check'
logger.error(msg)
raise Exception(msg)
def delete_files_day_ago(cache_days=10):
command = f"find {cache_file_dir} -type f -ctime +{cache_days} -exec rm {{}} \;"
result = subprocess.run(command, shell=True, capture_output=True, text=True)
logger.info(result.stdout)
def image_format_by_path(image_path):
image = Image.open(image_path)
image_format = image.format
if not image_format:
image_format = 'jpg'
elif image_format == "JPEG":
image_format = 'jpg'
else:
image_format = image_format.lower()
return image_format
def local_file_for_url(url, cache_days=10):
filename = url.split('/')[-1]
_, ext = filename.split('.')
file_path = f'{cache_file_dir}/{filename}'
if not os.path.exists(file_path):
img_url_to_local_path(url, file_path)
logger.info(f'download file to {file_path}')
delete_files_day_ago(cache_days)
else:
logger.info(f'cache file {file_path}')
return file_path
class Predictor:
def __init__(self):
self.det_thresh = 0.1
def setup(self):
self.face_swapper = insightface.model_zoo.get_model('cache/inswapper_128.onnx', providers=onnxruntime.get_available_providers())
self.face_enhancer = gfpgan.GFPGANer(model_path='cache/GFPGANv1.4.pth', upscale=1)
self.face_analyser = FaceAnalysis(name='buffalo_l')
def get_face(self, img_data, image_type='target'):
try:
logger.info(self.det_thresh)
self.face_analyser.prepare(ctx_id=0, det_thresh=0.5)
if image_type == 'source':
self.face_analyser.prepare(ctx_id=0, det_thresh=self.det_thresh)
analysed = self.face_analyser.get(img_data)
logger.info(f'face num: {len(analysed)}')
if len(analysed) == 0:
msg = 'no face'
logger.error(msg)
raise Exception(msg)
largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
return largest
except Exception as e:
logger.error(str(e))
raise Exception(str(e))
def enhance_face(self, target_face, target_frame, weight=0.5):
start_x, start_y, end_x, end_y = map(int, target_face['bbox'])
padding_x = int((end_x - start_x) * 0.5)
padding_y = int((end_y - start_y) * 0.5)
start_x = max(0, start_x - padding_x)
start_y = max(0, start_y - padding_y)
end_x = max(0, end_x + padding_x)
end_y = max(0, end_y + padding_y)
temp_face = target_frame[start_y:end_y, start_x:end_x]
if temp_face.size:
_, _, temp_face = self.face_enhancer.enhance(
temp_face,
paste_back=True,
weight=weight
)
target_frame[start_y:end_y, start_x:end_x] = temp_face
return target_frame
def predict(
self,
source_image_path,
target_image_path,
enhance_face,
# request_id: str = Input(description="request_id", default=""),
# det_thresh: float = Input(description="det_thresh default 0.1", default=0.1),
# local_target: Path = Input(description="local target image", default=None),
# local_source: Path = Input(description="local source image", default=None),
# cache_days: int = Input(description="cache days default 10", default=10),
# weight: float = Input(description="weight default 0.5", default=0.5)
) -> Any:
"""Run a single prediction on the model"""
request_id = None
det_thresh = 0.1
cache_days = 10
weight = 0.5
device = 'cuda' if torch.cuda.is_available() else 'mps'
logger.info(f'device: {device}, det_thresh:{det_thresh}')
try:
self.det_thresh = det_thresh
start_time = time.time()
if not request_id:
request_id = str(uuid.uuid4())
_request_id.set(request_id)
frame = cv2.imread(str(target_image_path))
source_frame = cv2.imread(str(source_image_path))
source_face = self.get_face(source_frame, image_type='source')
target_face = self.get_face(frame)
try:
logger.info(f'{frame.shape}, {target_face.shape}, {source_face.shape}')
except Exception as e:
logger.error(f"printing shapes failed, error:{str(e)}")
raise Exception(str(e))
ext = image_format_by_path(target_image_path)
size = os.path.getsize(target_image_path)
logger.info(f'origin {size/1024}k')
result = self.face_swapper.get(frame, target_face, source_face, paste_back=True)
if enhance_face:
result = self.enhance_face(target_face, result, weight)
# _, _, result = self.face_enhancer.enhance(
# result,
# paste_back=True
# )
out_path = f"{tempfile.mkdtemp()}/{uuid.uuid4()}.{ext}"
cv2.imwrite(str(out_path), result)
return Image.open(out_path)
size = os.path.getsize(out_path)
logger.info(f'result {size / 1024}k')
cost_time = time.time() - start_time
logger.info(f'total time: {cost_time * 1000} ms')
data = {'code': 200, 'msg': 'succeed', 'image': out_path, 'status': 'succeed'}
return data
except Exception as e:
logger.error(traceback.format_exc())
data = {'code': 500, 'msg': str(e), 'image': '', 'status': 'failed'}
logger.error(f"{str(e)}")
return data
def swap_faces(source_image_path, target_image_path, enhance_face):
predictor = Predictor()
predictor.setup()
return predictor.predict(
source_image_path,
target_image_path,
enhance_face
)
if __name__ == "__main__":
demo = gr.Interface(
fn=swap_faces,
inputs=[
gr.Image(type="filepath"),
gr.Image(type="filepath"),
gr.Checkbox(label="Enhance Face", value=True),
# gr.Checkbox(label="Enhance Frame", value=True),
],
outputs=[
gr.Image(
type="pil",
show_download_button=True,
)
],
title="Swap Faces",
allow_flagging="never"
)
demo.launch() |