File size: 11,220 Bytes
02c4dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from typing import Any, List, Dict, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper

import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_helper import warp_face, paste_back
from facefusion.face_reference import get_face_reference
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel, Embedding
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, update_status
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices

FRAME_PROCESSOR = None
MODEL_MATRIX = None
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
MODELS : Dict[str, ModelValue] =\
{
	'blendface_256':
	{
		'type': 'blendface',
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/blendface_256.onnx',
		'path': resolve_relative_path('../.assets/models/blendface_256.onnx'),
		'template': 'ffhq',
		'size': (512, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'inswapper_128':
	{
		'type': 'inswapper',
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx',
		'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'),
		'template': 'arcface_v2',
		'size': (128, 128),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'inswapper_128_fp16':
	{
		'type': 'inswapper',
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128_fp16.onnx',
		'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'),
		'template': 'arcface_v2',
		'size': (128, 128),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'simswap_256':
	{
		'type': 'simswap',
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_256.onnx',
		'path': resolve_relative_path('../.assets/models/simswap_256.onnx'),
		'template': 'arcface_v1',
		'size': (112, 256),
		'mean': [ 0.485, 0.456, 0.406 ],
		'standard_deviation': [ 0.229, 0.224, 0.225 ]
	},
	'simswap_512_unofficial':
	{
		'type': 'simswap',
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_512_unofficial.onnx',
		'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'),
		'template': 'arcface_v1',
		'size': (112, 512),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	}
}
OPTIONS : Optional[OptionsWithModel] = None


def get_frame_processor() -> Any:
	global FRAME_PROCESSOR

	with THREAD_LOCK:
		if FRAME_PROCESSOR is None:
			model_path = get_options('model').get('path')
			FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
	return FRAME_PROCESSOR


def clear_frame_processor() -> None:
	global FRAME_PROCESSOR

	FRAME_PROCESSOR = None


def get_model_matrix() -> Any:
	global MODEL_MATRIX

	with THREAD_LOCK:
		if MODEL_MATRIX is None:
			model_path = get_options('model').get('path')
			model = onnx.load(model_path)
			MODEL_MATRIX = numpy_helper.to_array(model.graph.initializer[-1])
	return MODEL_MATRIX


def clear_model_matrix() -> None:
	global MODEL_MATRIX

	MODEL_MATRIX = None


def get_options(key : Literal['model']) -> Any:
	global OPTIONS

	if OPTIONS is None:
		OPTIONS =\
		{
			'model': MODELS[frame_processors_globals.face_swapper_model]
		}
	return OPTIONS.get(key)


def set_options(key : Literal['model'], value : Any) -> None:
	global OPTIONS

	OPTIONS[key] = value


def register_args(program : ArgumentParser) -> None:
	program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), dest = 'face_swapper_model', default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models)


def apply_args(program : ArgumentParser) -> None:
	args = program.parse_args()
	frame_processors_globals.face_swapper_model = args.face_swapper_model
	if args.face_swapper_model == 'blendface_256':
		facefusion.globals.face_recognizer_model = 'arcface_blendface'
	if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16':
		facefusion.globals.face_recognizer_model = 'arcface_inswapper'
	if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial':
		facefusion.globals.face_recognizer_model = 'arcface_simswap'


def pre_check() -> bool:
	if not facefusion.globals.skip_download:
		download_directory_path = resolve_relative_path('../.assets/models')
		model_url = get_options('model').get('url')
		conditional_download(download_directory_path, [ model_url ])
	return True


def pre_process(mode : ProcessMode) -> bool:
	model_url = get_options('model').get('url')
	model_path = get_options('model').get('path')
	if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
		update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
		return False
	elif not is_file(model_path):
		update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
		return False
	if not is_image(facefusion.globals.source_path):
		update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
		return False
	elif not get_one_face(read_static_image(facefusion.globals.source_path)):
		update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
		return False
	if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
		update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
		return False
	if mode == 'output' and not facefusion.globals.output_path:
		update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
		return False
	return True


def post_process() -> None:
	clear_frame_processor()
	clear_model_matrix()
	clear_face_analyser()
	clear_content_analyser()
	read_static_image.cache_clear()


def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
	frame_processor = get_frame_processor()
	model_template = get_options('model').get('template')
	model_size = get_options('model').get('size')
	model_type = get_options('model').get('type')
	crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
	crop_frame = prepare_crop_frame(crop_frame)
	frame_processor_inputs = {}
	for frame_processor_input in frame_processor.get_inputs():
		if frame_processor_input.name == 'source':
			if model_type == 'blendface':
				frame_processor_inputs[frame_processor_input.name] = prepare_source_frame(source_face)
			else:
				frame_processor_inputs[frame_processor_input.name] = prepare_source_embedding(source_face)
		if frame_processor_input.name == 'target':
			frame_processor_inputs[frame_processor_input.name] = crop_frame
	crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
	crop_frame = normalize_crop_frame(crop_frame)
	temp_frame = paste_back(temp_frame, crop_frame, affine_matrix, facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
	return temp_frame


def prepare_source_frame(source_face : Face) -> numpy.ndarray[Any, Any]:
	source_frame = read_static_image(facefusion.globals.source_path)
	source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_v2', (112, 112))
	source_frame = source_frame[:, :, ::-1] / 255.0
	source_frame = source_frame.transpose(2, 0, 1)
	source_frame = numpy.expand_dims(source_frame, axis = 0).astype(numpy.float32)
	return source_frame


def prepare_source_embedding(source_face : Face) -> Embedding:
	model_type = get_options('model').get('type')
	if model_type == 'inswapper':
		model_matrix = get_model_matrix()
		source_embedding = source_face.embedding.reshape((1, -1))
		source_embedding = numpy.dot(source_embedding, model_matrix) / numpy.linalg.norm(source_embedding)
	else:
		source_embedding = source_face.normed_embedding.reshape(1, -1)
	return source_embedding


def prepare_crop_frame(crop_frame : Frame) -> Frame:
	model_mean = get_options('model').get('mean')
	model_standard_deviation = get_options('model').get('standard_deviation')
	crop_frame = crop_frame[:, :, ::-1] / 255.0
	crop_frame = (crop_frame - model_mean) / model_standard_deviation
	crop_frame = crop_frame.transpose(2, 0, 1)
	crop_frame = numpy.expand_dims(crop_frame, axis = 0).astype(numpy.float32)
	return crop_frame


def normalize_crop_frame(crop_frame : Frame) -> Frame:
	crop_frame = crop_frame.transpose(1, 2, 0)
	crop_frame = (crop_frame * 255.0).round()
	crop_frame = crop_frame[:, :, ::-1].astype(numpy.uint8)
	return crop_frame


def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
	if 'reference' in facefusion.globals.face_selector_mode:
		similar_faces = find_similar_faces(temp_frame, reference_face, facefusion.globals.reference_face_distance)
		if similar_faces:
			for similar_face in similar_faces:
				temp_frame = swap_face(source_face, similar_face, temp_frame)
	if 'one' in facefusion.globals.face_selector_mode:
		target_face = get_one_face(temp_frame)
		if target_face:
			temp_frame = swap_face(source_face, target_face, temp_frame)
	if 'many' in facefusion.globals.face_selector_mode:
		many_faces = get_many_faces(temp_frame)
		if many_faces:
			for target_face in many_faces:
				temp_frame = swap_face(source_face, target_face, temp_frame)
	return temp_frame


def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
	source_face = get_one_face(read_static_image(source_path))
	reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
	for temp_frame_path in temp_frame_paths:
		temp_frame = read_image(temp_frame_path)
		result_frame = process_frame(source_face, reference_face, temp_frame)
		write_image(temp_frame_path, result_frame)
		update_progress()


def process_image(source_path : str, target_path : str, output_path : str) -> None:
	source_face = get_one_face(read_static_image(source_path))
	target_frame = read_static_image(target_path)
	reference_face = get_one_face(target_frame, facefusion.globals.reference_face_position) if 'reference' in facefusion.globals.face_selector_mode else None
	result_frame = process_frame(source_face, reference_face, target_frame)
	write_image(output_path, result_frame)


def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
	frame_processors.multi_process_frames(source_path, temp_frame_paths, process_frames)