Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import re | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
h3#header { | |
text-align: center; | |
} | |
img#overview { | |
max-width: 800px; | |
max-height: 600px; | |
} | |
img#style-image { | |
max-width: 1000px; | |
max-height: 600px; | |
} | |
''' | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown('''<h1 id="title">Image Caption 🖼️</h1>''') | |
gr.Markdown('''Made by : Shreyas Dixit''') | |
with gr.Column(): | |
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="auto",label="Captions") | |
btn = gr.Button("Genrate Caption") | |
btn.click(fn=predict, inputs=input, outputs=output) | |
demo.launch() |