Spaces:
Runtime error
Runtime error
File size: 1,519 Bytes
dd33bd5 c8081ec dd33bd5 c8081ec 56b9e35 d52fc21 c8081ec dd33bd5 56b9e35 c8081ec dd33bd5 c8081ec dd33bd5 c8081ec dd33bd5 49fe0a4 dd33bd5 48f7644 c8081ec 877b91d e42c333 c8081ec e50d169 60d48cd c8081ec ea5afdb c8081ec 877b91d c8081ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import torch
import re
import gradio as gr
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
device='cpu'
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
def predict(image,max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
output = gr.outputs.Textbox(type="auto",label="Captions")
examples = [f"example{i}.jpg" for i in range(1,6)]
description= "Image captioning application made using transformers"
title = "Image Captioning 🖼️"
article = "Created By : Shreyas Dixit "
interface = gr.Interface(
fn=predict,
inputs = input,
theme="grass",
outputs=output,
examples = examples,
title=title,
description=description,
article = article,
)
interface.launch(debug=True) |