Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ def compute_text_embeddings(list_of_strings):
|
|
24 |
result = model.get_text_features(**inputs).detach().numpy()
|
25 |
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
26 |
|
27 |
-
def image_search(query, corpus, max_results=
|
28 |
positive_embeddings = None
|
29 |
|
30 |
def concatenate_embeddings(e1, e2):
|
@@ -68,7 +68,7 @@ def image_search(query, corpus, max_results=3):
|
|
68 |
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
69 |
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
70 |
|
71 |
-
results = np.argsort(dot_product)[-1 : -
|
72 |
return [
|
73 |
(
|
74 |
df[k].iloc[i]["path"],
|
|
|
24 |
result = model.get_text_features(**inputs).detach().numpy()
|
25 |
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
26 |
|
27 |
+
def image_search(query, corpus, max_results=24):
|
28 |
positive_embeddings = None
|
29 |
|
30 |
def concatenate_embeddings(e1, e2):
|
|
|
68 |
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
69 |
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
70 |
|
71 |
+
results = np.argsort(dot_product)[-1 : -max_results - 1 : -1]
|
72 |
return [
|
73 |
(
|
74 |
df[k].iloc[i]["path"],
|